
## **Charles Chemel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5715001/publications.pdf Version: 2024-02-01



CHADLES CHEMEL

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Drivers of severe air pollution events in a deep valley during wintertime: A case study from the Arve river valley, France. Atmospheric Environment, 2021, 247, 118030.                                              | 4.1 | 16        |
| 2  | Numerical Modelling of Neutral Boundary-layer Flow Across a Forested Ridge. Boundary-Layer<br>Meteorology, 2021, 180, 457-476.                                                                                       | 2.3 | 1         |
| 3  | Design and field campaign validation of a multi-rotor unmanned aerial vehicle and optical particle counter. Atmospheric Measurement Techniques, 2020, 13, 6613-6630.                                                 | 3.1 | 13        |
| 4  | Dispersion of Tracers in the Stable Atmosphere of a Valley Opening onto a Plain. Boundary-Layer<br>Meteorology, 2019, 172, 291-315.                                                                                  | 2.3 | 7         |
| 5  | Impact of Along-Valley Orographic Variations on the Dispersion of Passive Tracers in a Stable<br>Atmosphere. Atmosphere, 2019, 10, 225.                                                                              | 2.3 | 8         |
| 6  | Energetics of Deep Alpine Valleys in Pooling and Draining Configurations. Journals of the<br>Atmospheric Sciences, 2017, 74, 2105-2124.                                                                              | 1.7 | 12        |
| 7  | Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data.<br>Atmospheric Chemistry and Physics, 2016, 16, 15629-15652.                                                        | 4.9 | 23        |
| 8  | Interactions Between the Nighttime Valley-Wind System and a Developing Cold-Air Pool.<br>Boundary-Layer Meteorology, 2016, 161, 49-72.                                                                               | 2.3 | 19        |
| 9  | A risk based application of the regional model CMAQ to policy decisions. Atmospheric Pollution Research, 2016, 7, 207-214.                                                                                           | 3.8 | 2         |
| 10 | Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley.<br>Atmospheric Environment, 2016, 128, 208-215.                                                              | 4.1 | 48        |
| 11 | Sensitivity of tropical deep convection in global models: effects of horizontal resolution, surface constraints, and <scp>3D</scp> atmospheric nudging. Atmospheric Science Letters, 2015, 16, 148-154.              | 1.9 | 5         |
| 12 | Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmospheric Environment, 2015, 115, 470-498.                                            | 4.1 | 85        |
| 13 | Evaluation of operational on-line-coupled regional air quality models over Europe and North America<br>in the context of AQMEII phase 2. Part I: Ozone. Atmospheric Environment, 2015, 115, 404-420.                 | 4.1 | 168       |
| 14 | Pollutant Dispersion in a Developing Valley Cold-Air Pool. Boundary-Layer Meteorology, 2015, 154,<br>391-408.                                                                                                        | 2.3 | 14        |
| 15 | Analysis of meteorology–chemistry interactions during air pollution episodes using online coupled<br>models within AQMEII phase-2. Atmospheric Environment, 2015, 115, 527-540.                                      | 4.1 | 61        |
| 16 | Evaluation of operational online-coupled regional air quality models over Europe and North America<br>in the context of AQMEII phase 2. Part II: Particulate matter. Atmospheric Environment, 2015, 115,<br>421-441. | 4.1 | 133       |
| 17 | Interactions Between Downslope Flows and a Developing Cold-Air Pool. Boundary-Layer Meteorology,<br>2015, 154, 57-80.                                                                                                | 2.3 | 18        |
| 18 | Analysis of UK and European NOx and VOC emission scenarios in the Defra model intercomparison exercise. Atmospheric Environment, 2014, 94, 249-257.                                                                  | 4.1 | 8         |

CHARLES CHEMEL

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Evolution of Cold-Air-Pooling Processes in Complex Terrain. Boundary-Layer Meteorology, 2014, 150, 423-447.                                                                                         | 2.3 | 27        |
| 20 | Characterization of Oscillatory Motions in the Stable Atmosphere of a Deep Valley. Boundary-Layer<br>Meteorology, 2013, 148, 439-454.                                                               | 2.3 | 15        |
| 21 | Response of London's Urban Heat Island to a Marine Air Intrusion in an Easterly Wind Regime.<br>Boundary-Layer Meteorology, 2012, 144, 65-81.                                                       | 2.3 | 37        |
| 22 | Trace gas/aerosol boundary concentrations and their impacts on continental-scale AQMEII modeling domains. Atmospheric Environment, 2012, 53, 38-50.                                                 | 4.1 | 72        |
| 23 | Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International<br>Initiative (AQMEII) air quality simulations. Atmospheric Environment, 2012, 53, 15-37.          | 4.1 | 111       |
| 24 | Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmospheric Environment, 2012, 53, 142-155.                              | 4.1 | 89        |
| 25 | Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmospheric Environment, 2012, 53, 60-74.                                      | 4.1 | 192       |
| 26 | Operational model evaluation for particulate matter in Europe and North America in the context of AQMEII. Atmospheric Environment, 2012, 53, 75-92.                                                 | 4.1 | 214       |
| 27 | Turbulent mixing in a katabatic wind under stable conditions. Meteorologische Zeitschrift, 2010, 19, 467-480.                                                                                       | 1.0 | 5         |
| 28 | Quantifying the Imprint of a Severe Hector Thunderstorm during ACTIVE/SCOUT-O3 onto the Water<br>Content in the Upper Troposphere/Lower Stratosphere. Monthly Weather Review, 2009, 137, 2493-2514. | 1.4 | 49        |
| 29 | Production of ozone in the Chamonix Valley (France). International Journal of Environment and Pollution 2005, 24, 201                                                                               | 0.2 | 3         |