

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5714531/publications.pdf Version: 2024-02-01

Rui Yi

#	Article	IF	CITATIONS
1	Relax to grow more hair. Nature, 2021, 592, 356-357.	27.8	1
2	Inhibition of microRNA turns back the CLOCK of hair follicle aging. Nature Aging, 2021, 1, 753-754.	11.6	2
3	Transgenic overexpression of the miR-200b/200a/429 cluster inhibits mammary tumor initiation. Translational Oncology, 2021, 14, 101228.	3.7	3
4	Escape of hair follicle stem cells causes stem cell exhaustion during aging. Nature Aging, 2021, 1, 889-903.	11.6	31
5	Integrated analysis of directly captured microRNA targets reveals the impact of microRNAs on mammalian transcriptome. Rna, 2020, 26, 306-323.	3.5	18
6	XPO5 promotes primary miRNA processing independently of RanGTP. Nature Communications, 2020, 11, 1845.	12.8	21
7	A basalâ€enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model. Molecular Carcinogenesis, 2019, 58, 2241-2253.	2.7	1
8	The RNase PARN Controls the Levels of Specific miRNAs that Contribute to p53 Regulation. Molecular Cell, 2019, 73, 1204-1216.e4.	9.7	54
9	Cover Image, Volume 58, Issue 12. Molecular Carcinogenesis, 2019, 58, i.	2.7	0
10	Is it time to take R(epressive) out of PRC1?. Genes and Development, 2019, 33, 4-5.	5.9	3
11	The Skin(ny) on Regenerating the Largest Organ to Save a Patient's Life. Cell Stem Cell, 2018, 22, 14-15.	11.1	2
12	The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis. Journal of Cell Biology, 2018, 217, 2185-2204.	5.2	69
13	Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, , 175-196.	0.5	0
14	Single Cell and Open Chromatin Analysis Reveals Molecular Origin of Epidermal Cells of the Skin. Developmental Cell, 2018, 47, 21-37.e5.	7.0	56
15	Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation. Stem Cells, 2017, 35, 2323-2330.	3.2	52
16	Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. Cell Stem Cell, 2017, 20, 191-204.e5.	11.1	170
17	Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration. Nucleic Acids Research, 2016, 44, 3788-3800.	14.5	48
18	Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles. Cell Reports, 2016, 14, 3001-3018.	6.4	160

Rui Yi

#	Article	IF	CITATIONS
19	Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science, 2016, 351, 613-617.	12.6	109
20	MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells. ELife, 2015, 4, .	6.0	17
21	Not <scp>miR</scp> â€ly micromanagers: the functions and regulatory networks of microRNAs in mammalian skin. Wiley Interdisciplinary Reviews RNA, 2014, 5, 849-865.	6.4	8
22	3′UTRs take a long shot in the brain. BioEssays, 2014, 36, 39-45.	2.5	29
23	Stem cell quiescence acts as a tumour suppressor in squamous tumours. Nature Cell Biology, 2014, 16, 99-107.	10.3	69
24	Highly Efficient Ligation of Small RNA Molecules for MicroRNA Quantitation by High-Throughput Sequencing. Journal of Visualized Experiments, 2014, , e52095.	0.3	6
25	MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nature Cell Biology, 2013, 15, 1153-1163.	10.3	145
26	High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biology, 2013, 14, R109.	9.6	55
27	Genome-wide maps of polyadenylation reveal dynamic mRNA 3′-end formation in mammalian cell lineages. Rna, 2013, 19, 413-425.	3.5	46
28	Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development (Cambridge), 2013, 140, 1882-1891.	2.5	65
29	A miR Image of Stem Cells and Their Lineages. Current Topics in Developmental Biology, 2012, 99, 175-199.	2.2	16
30	Quantitative functions of Argonaute proteins in mammalian development. Genes and Development, 2012, 26, 693-704.	5.9	153
31	MicroRNAs and their roles in mammalian stem cells. Journal of Cell Science, 2011, 124, 1775-1783.	2.0	93
32	MicroRNA-mediated control in the skin. Cell Death and Differentiation, 2010, 17, 229-235.	11.2	97
33	DGCR8-dependent microRNA biogenesis is essential for skin development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 498-502.	7.1	217
34	A skin microRNA promotes differentiation by repressing â€~stemness'. Nature, 2008, 452, 225-229.	27.8	735
35	Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genetics, 2006, 38, 356-362.	21.4	518
36	Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO Journal, 2005, 24, 138-148.	7.8	505

Rui Yi

#	Article	IF	CITATIONS
37	Overexpression of Exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. Rna, 2005, 11, 220-226.	3.5	228
38	Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes and Development, 2003, 17, 3011-3016.	5.9	2,377
39	MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9779-9784.	7.1	813
40	Recruitment of the Crm1 Nuclear Export Factor Is Sufficient To Induce Cytoplasmic Expression of Incompletely Spliced Human Immunodeficiency Virus mRNAs. Journal of Virology, 2002, 76, 2036-2042.	3.4	45
41	Both Ran and importins have the ability to function as nuclear mRNA export factors. Rna, 2002, 8, 180-187.	3.5	18