Dejun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713846/publications.pdf

Version: 2024-02-01

103	3,279	31	54
papers	citations	h-index	g-index
103	103	103	2421
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Degradable mesoporous semimetal antimony nanospheres for near-infrared II multimodal theranostics. Nature Communications, 2022, 13, 539.	12.8	17
2	Tapered Microfiber MZI Biosensor for Highly Sensitive Detection of <i>Staphylococcus</i> Aureus. IEEE Sensors Journal, 2022, 22, 5531-5539.	4.7	11
3	Fiber Ring Laser Based on Side-Polished Fiber MZI for Enhancing Refractive Index and Torsion Measurement. IEEE Sensors Journal, 2022, 22, 7779-7784.	4.7	9
4	Tapered Side-Polished Microfibre Sensor for High Sensitivity hCG Detection. IEEE Sensors Journal, 2022, 22, 7727-7733.	4.7	3
5	Singlemode-Multimode-Singlemode Optical Fiber Sensor for Accurate Blood Pressure Monitoring. Journal of Lightwave Technology, 2022, 40, 4443-4450.	4.6	13
6	Light transmission mechanisms in a SMF-capillary fiber-SMF structure and its application to bi-directional liquid level measurement. Optics Express, 2022, 30, 21876.	3.4	4
7	High sensitivity and fast response optical fiber nucleic acid sensor. Optics and Laser Technology, 2022, 154, 108271.	4.6	4
8	Slit Beam Shaping for Femtosecond Laser Point-by-Point Inscription of Highly Localized Fiber Bragg Grating. Journal of Lightwave Technology, 2022, 40, 5722-5728.	4.6	4
9	Terahertz membrane sensing based on terahertz composite slabs with enhanced fields. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	1
10	Mach-Zehnder Interferometer for High Temperature (1000 \hat{A}° C) Sensing Based on a Few-Mode Fiber. Photonic Sensors, 2021, 11, 341-349.	5.0	12
11	Enhancing the Visibility of Vernier Effect in a Tri-Microfiber Coupler Fiber Loop Interferometer for Ultrasensitive Refractive Index and Temperature Sensing. Journal of Lightwave Technology, 2021, 39, 1523-1529.	4.6	17
12	Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sensors Journal, 2021, 21, 12734-12751.	4.7	78
13	Terahertz high-Q quasi-bound states in the continuum in laser-fabricated metallic double-slit arrays. Optics Express, 2021, 29, 24779.	3.4	27
14	Profile control of femtosecond laser-fabricated moth-eye structures on Si substrate. Optics and Lasers in Engineering, 2021, 142, 106584.	3.8	24
15	Strain-, curvature- and twist-independent temperature sensor based on a small air core hollow core fiber structure. Optics Express, 2021, 29, 26353.	3.4	10
16	Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-HĀ ¤ chen shifts with perfect reflection. Physical Review A, 2021, 104, .	2.5	51
17	Air pressure measurement of circular thin plate using optical fiber multimode interferometer. Measurement: Journal of the International Measurement Confederation, 2021, 182, 109784.	5.0	5
18	High sensitivity liquid level sensor for microfluidic applications using a hollow core fiber structure. Sensors and Actuators A: Physical, 2021, 332, 113134.	4.1	6

#	Article	IF	CITATIONS
19	Achieving High Transmission and Q Bragg Filter via Balancing Dissipation and Radiation Loss. IEEE Photonics Journal, 2021, 13 , 1 -5.	2.0	1
20	Optical fiber fabry-perot sensor based on a singlemode-hollow core-singlemode fiber structure for direct detection of phase transition in n-octadecane. Measurement: Journal of the International Measurement Confederation, 2021, 184, 110002.	5.0	3
21	Comparative Study on Sensing Properties of Fiber-Coupled Microbottle Resonators With Polymer Materials. IEEE Sensors Journal, 2021, 21, 26681-26689.	4.7	5
22	Investigation of quasi-bound states in the continuum in terahertz metal complementary periodic cross-shaped resonators. , 2021, , .		0
23	Ultra-compact in-core-parallel-written FBG and Mach–Zehnder interferometer for simultaneous measurement of strain and temperature. Optics Letters, 2021, 46, 5595.	3.3	14
24	Single-Polarization Hollow-Core Negative Curvature Fiber for Temperature Sensing., 2021,,.		0
25	Bandwidth-tunable near-infrared perfect absorption of graphene in a compound grating waveguide structure supporting quasi-bound states in the continuum. Optics Express, 2021, 29, 41975.	3.4	48
26	Negative Curvature Hollow Core Fiber Based All-Fiber Interferometer and Its Sensing Applications to Temperature and Strain. Sensors, 2020, 20, 4763.	3.8	8
27	Investigation of a Side-Polished Fiber MZI and Its Sensing Performance. IEEE Sensors Journal, 2020, 20, 5909-5914.	4.7	21
28	Integrating Radio-Over-Fiber Communication System and BOTDR Sensor System. Sensors, 2020, 20, 2232.	3.8	8
29	Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chemical Engineering Journal, 2020, 396, 125239.	12.7	59
30	High sensitivity, low temperature-crosstalk strain sensor based on a microsphere embedded Fabry–Perot interferometer. Sensors and Actuators A: Physical, 2020, 310, 112048.	4.1	13
31	Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection. Sensors and Actuators B: Chemical, 2020, 320, 128283.	7.8	58
32	Novel Microfiber Sensor and Its Biosensing Application for Detection of hCG Based on a Singlemode-Tapered Hollow Core-Singlemode Fiber Structure. IEEE Sensors Journal, 2020, 20, 9071-9078.	4.7	20
33	Anti-resonance, inhibited coupling and mode transition in depressed core fibers. Optics Express, 2020, 28, 16526.	3.4	14
34	Terahertz composite plasmonic slabs based on double-layer metallic gratings. Optics Express, 2020, 28, 18212.	3.4	7
35	Sharp resonances in terahertz free-standing three-dimensional metallic woven meshes. Optics Express, 2020, 28, 30174.	3.4	12
36	Miniature Fabry–Perot interferometer based on a movable microsphere reflector. Optics Letters, 2020, 45, 787.	3.3	19

#	Article	IF	Citations
37	Microfluidic flow direction and rate vector sensor based on a partially gold-coated TFBG. Optics Letters, 2020, 45, 2776.	3.3	16
38	Angled fiber-based Fabry–Perot interferometer. Optics Letters, 2020, 45, 292.	3.3	7
39	Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer. Biosensors and Bioelectronics, 2019, 145, 111563.	10.1	29
40	High Temperature (Up to 950 °C) Sensor Based on Micro Taper In-Line Fiber Mach–Zehnder Interferometer. Applied Sciences (Switzerland), 2019, 9, 2394.	2.5	12
41	Femtosecond real-time probing of the excited-state intramolecular proton transfer reaction in methyl salicylate. Journal of Chemical Physics, 2019, 151, 094302.	3.0	12
42	SNS optical fiber sensor for direct detection of phase transitions in C18H38 n-alkane material. Experimental Thermal and Fluid Science, 2019, 109, 109854.	2.7	7
43	Discrete Self-Imaging in Small-Core Optical Fiber Interferometers. Journal of Lightwave Technology, 2019, 37, 1873-1884.	4.6	12
44	Packaged inline cascaded optical micro-resonators for multi- parameter sensing. Optical Fiber Technology, 2019, 50, 50-54.	2.7	12
45	Magnetic Field Sensor Based on a Tri-Microfiber Coupler Ring in Magnetic Fluid and a Fiber Bragg Grating. Sensors, 2019, 19, 5100.	3.8	18
46	Temperature-compensated magnetic field sensing with a dual-ring structure consisting of microfiber coupler-Sagnac loop and fiber Bragg grating-assisted resonant cavity. Applied Optics, 2019, 58, 2334.	1.8	17
47	Strain independent twist sensor based on uneven platinum coated hollow core fiber structure. Optics Express, 2019, 27, 19726.	3.4	7
48	Sub-micrometer resolution liquid level sensor based on a hollow core fiber structure. Optics Letters, 2019, 44, 2125.	3.3	40
49	Performance Improvement of Brillouin Ring Laser Based BOTDR System Employing a Wavelength Diversity Technique. Journal of Lightwave Technology, 2018, 36, 1084-1090.	4.6	25
50	Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement. Journal of Lightwave Technology, 2018, 36, 1583-1590.	4.6	59
51	Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air. Scientific Reports, 2018, 8, 1620.	3.3	34
52	A Coated Spherical Microresonator for Measurement of Water Vapor Concentration at PPM Levels in Very Low Humidity Environments. Journal of Lightwave Technology, 2018, 36, 2667-2674.	4.6	23
53	Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability. IEEE Photonics Journal, 2018, 10, 1-12.	2.0	4
54	A Packaged Whispering Gallery Mode Strain Sensor Based on a Polymer-Wire Cylindrical Micro Resonator. Journal of Lightwave Technology, 2018, 36, 1757-1765.	4.6	25

#	Article	IF	Citations
55	Optical fiber Fresnel reflection sensor for direct detection of the solid–liquid phase change in n-octadecane. Measurement Science and Technology, 2018, 29, 125107.	2.6	8
56	Singlemode-multimode-singlemode fibre structure for phase transition monitoring in phase changing materials (invited paper). Journal of Physics: Conference Series, 2018, 1065, 252024.	0.4	0
57	Optical fibre sensors for monitoring phase transitions in phase changing materials. Smart Materials and Structures, 2018, 27, 105021.	3.5	5
58	High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol. Sensors and Actuators B: Chemical, 2018, 271, 1-8.	7.8	45
59	Highly Sensitive Twist Sensor Based on Partially Silver Coated Hollow Core Fiber Structure. Journal of Lightwave Technology, 2018, 36, 3672-3677.	4.6	37
60	Optical spectral sweep comb liquid flow rate sensor. Optics Letters, 2018, 43, 751.	3.3	31
61	Measurements of milli-Newton surface tension forces with tilted fiber Bragg gratings. Optics Letters, 2018, 43, 255.	3.3	31
62	A simple all-fiber comb filter based on the combined effect of multimode interference and Mach-Zehnder interferometer. Scientific Reports, 2018, 8, 11803.	3.3	10
63	Whispering gallery mode micro resonators for multi-parameter sensing applications. Optics Express, 2018, 26, 31829.	3.4	26
64	A simple optical fiber interferometer based breathing sensor. Measurement Science and Technology, 2017, 28, 035105.	2.6	28
65	High Sensitivity Ammonia Gas Sensor Based on a Silica-Gel-Coated Microfiber Coupler. Journal of Lightwave Technology, 2017, 35, 2864-2870.	4.6	33
66	Detection of volatile organic compounds using an optical fiber sensor coated with a sol-gel silica layer containing immobilized Nile red. Proceedings of SPIE, 2017, , .	0.8	4
67	Simultaneous measurement of both magnetic field strength and temperature with a microfiber coupler based fiber laser sensor. Proceedings of SPIE, 2017, , .	0.8	3
68	Compact relative humidity sensor based on an Agarose hydrogel coated silica microsphere resonator. , 2017, , .		1
69	Novel Magneticâ€Luminescent Janus Nanoparticles for Cell Labeling and Tumor Photothermal Therapy. Small, 2017, 13, 1701129.	10.0	40
70	Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Scientific Reports, 2017, 7, 4725.	3.3	57
71	High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure. Sensors, 2017, 17, 1415.	3.8	16
72	High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water. Optics Express, 2016, 24, 24179.	3.4	32

#	Article	IF	Citations
73	Agarose coated spherical micro resonator for humidity measurements. Optics Express, 2016, 24, 21216.	3.4	7 5
74	Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler. IEEE Photonics Journal, $2016, 8, 1-7$.	2.0	25
75	Sol-gel silica coated optical fiber sensor for ammonia gas detection. , 2016, , .		0
76	Plasmonic fiber-optic vector magnetometer. Applied Physics Letters, 2016, 108, .	3.3	74
77	Investigation on stress/strain sensing characteristics for magnetorheological smart composite material by a SMS fiber structure. , 2015, , .		0
78	High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Optics Letters, 2015, 40, 4166.	3.3	70
79	The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing. Optics and Laser Technology, 2014, 63, 29-33.	4.6	28
80	Enhanced Refractometer Based on Periodically Tapered Small Core Singlemode Fiber. IEEE Sensors Journal, 2013, 13, 180-185.	4.7	35
81	Enhanced refractive index sensor using a combination of a long period fiber grating and a small core singlemode fiber structure. Measurement Science and Technology, 2013, 24, 094002.	2.6	7
82	Fiber-tip high-temperature sensor based on multimode interference. Optics Letters, 2013, 38, 4617.	3.3	70
83	High temperature performance of an optical microfibre coupler and its potential use as a sensor. Electronics Letters, 2012, 48, 283.	1.0	24
84	Hydrothermal synthesis of assembled sphere-like WO3 architectures and their gas-sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1467-1472.	2.7	42
85	Gas sensing mechanism and properties of Ce-doped SnO2 sensors for volatile organic compounds. Materials Science in Semiconductor Processing, 2012, 15, 438-444.	4.0	78
86	Evanescent field coupling between two parallel close contact SMS fiber structures. Optics Express, 2012, 20, 3098.	3.4	8
87	Hydrothermal synthesis and gas sensing properties of different titanate nanostructures. Journal of Materials Science: Materials in Electronics, 2012, 23, 576-581.	2.2	10
88	Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure. Measurement Science and Technology, 2011, 22, 025203.	2.6	59
89	Use of a Bent Single SMS Fiber Structure for Simultaneous Measurement of Displacement and Temperature Sensing. IEEE Photonics Technology Letters, 2011, 23, 130-132.	2.5	94
90	Light Coupling Between a Singlemode- Multimode-Singlemode (SMS) Fiber Structure and a Long Period Fiber Grating. Journal of Lightwave Technology, 2011, 29, 3683-3688.	4.6	6

#	Article	IF	CITATIONS
91	High sensitivity SMS fiber structure based refractometer – analysis and experiment. Optics Express, 2011, 19, 7937.	3.4	387
92	Humidity sensor based on a single-mode hetero-core fiber structure. Optics Letters, 2011, 36, 1752.	3.3	79
93	Fiber refractometer based on a fiber Bragg grating and single-mode–multimode–single-mode fiber structure. Optics Letters, 2011, 36, 2197.	3.3	125
94	High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Optics Letters, 2011, 36, 2233.	3.3	252
95	Hydrogen sensing and mechanism of M-doped SnO2 (M = Cr3+, Cu2+ and Pd2+) nanocomposite. Sensors and Actuators B: Chemical, 2011, 160, 455-462.	7.8	129
96	Singleâ€mode–multimode–singleâ€mode fiber structures for simultaneous measurement of strain and temperature. Microwave and Optical Technology Letters, 2011, 53, 2181-2185.	1.4	27
97	A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure. Journal of Optics (United Kingdom), 2011, 13, 125401.	2.2	35
98	Simple design technique for a triangular FBG filter based on a linearly chirped grating. Optics Communications, 2010, 283, 985-992.	2.1	15
99	A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system. Measurement Science and Technology, 2010, 21, 094013.	2.6	10
100	Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme. Applied Optics, 2010, 49, 536.	2.1	64
101	Study of the effect of source signal bandwidth on ratiometric wavelength measurement. Applied Optics, 2010, 49, 5626.	2.1	4
102	Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation. Applied Optics, 2009, 48, 5451.	2.1	48
103	General design approach to multichannel fiber Bragg grating. Journal of Lightwave Technology, 2006, 24, 1571-1580.	4.6	27