## Yasubumi Sakakibara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713381/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence<br>reads. Nucleic Acids Research, 2012, 40, e155-e155.                                         | 14.5 | 562       |
| 2  | Stochastic context-free grammers for tRNA modeling. Nucleic Acids Research, 1994, 22, 5112-5120.                                                                                               | 14.5 | 317       |
| 3  | RNA secondary structure prediction using deep learning with thermodynamic integration. Nature Communications, 2021, 12, 941.                                                                   | 12.8 | 181       |
| 4  | Efficient learning of context-free grammars from positive structural examples. Information and Computation, 1992, 97, 23-60.                                                                   | 0.7  | 127       |
| 5  | Recent advances of grammatical inference. Theoretical Computer Science, 1997, 185, 15-45.                                                                                                      | 0.9  | 127       |
| 6  | Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinformatics, 2018, 19, 526.                                                      | 2.6  | 114       |
| 7  | Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science, 1990, 76, 223-242.                                                                       | 0.9  | 101       |
| 8  | Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data. Bioinformatics, 2007, 23, 2004-2012.                                           | 4.1  | 91        |
| 9  | MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Research, 2015, 22, 69-77.                                           | 3.4  | 89        |
| 10 | Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. BMC Genomics, 2010, 11, 243.                                                             | 2.8  | 87        |
| 11 | Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data. Briefings in Bioinformatics, 2019, 20, 866-876.                              | 6.5  | 86        |
| 12 | Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.<br>Bioinformatics, 2005, 21, 2611-2617.                                                         | 4.1  | 62        |
| 13 | Convolutional neural networks for classification of alignments of non-coding RNA sequences.<br>Bioinformatics, 2018, 34, i237-i244.                                                            | 4.1  | 59        |
| 14 | Integrating Statistical Predictions and Experimental Verifications for Enhancing Protein-Chemical Interaction Predictions in Virtual Screening. PLoS Computational Biology, 2009, 5, e1000397. | 3.2  | 53        |
| 15 | Grammatical inference in bioinformatics. IEEE Transactions on Pattern Analysis and Machine<br>Intelligence, 2005, 27, 1051-1062.                                                               | 13.9 | 52        |
| 16 | Pair hidden Markov models on tree structures. Bioinformatics, 2003, 19, i232-i240.                                                                                                             | 4.1  | 44        |
| 17 | Learning context-free grammars using tabular representations. Pattern Recognition, 2005, 38, 1372-1383.                                                                                        | 8.1  | 43        |
| 18 | RNA secondary structural alignment with conditional random fields. Bioinformatics, 2005, 21, ii237-ii242.                                                                                      | 4.1  | 42        |

2

YASUBUMI SAKAKIBARA

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Whole Genome Complete Resequencing of Bacillus subtilis Natto by Combining Long Reads with<br>High-Quality Short Reads. PLoS ONE, 2014, 9, e109999.                                                          | 2.5  | 41        |
| 20 | DAFS: simultaneous aligning and folding of RNA sequences via dual decomposition. Bioinformatics, 2012, 28, 3218-3224.                                                                                        | 4.1  | 40        |
| 21 | An efficient algorithm for de novo predictions of biochemical pathways between chemical compounds. BMC Bioinformatics, 2012, 13, S8.                                                                         | 2.6  | 32        |
| 22 | Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis. Scientific Reports, 2015, 5, 16894.                                                                 | 3.3  | 32        |
| 23 | Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods. PLoS ONE, 2015, 10, e0141369.                                         | 2.5  | 32        |
| 24 | A max-margin training of RNA secondary structure prediction integrated with the thermodynamic model. Journal of Bioinformatics and Computational Biology, 2018, 16, 1840025.                                 | 0.8  | 32        |
| 25 | Murasaki: A Fast, Parallelizable Algorithm to Find Anchors from Multiple Genomes. PLoS ONE, 2010, 5, e12651.                                                                                                 | 2.5  | 30        |
| 26 | Learning Context-Free Grammars from Partially Structured Examples. Lecture Notes in Computer Science, 2000, , 229-240.                                                                                       | 1.3  | 23        |
| 27 | Performance of a deep learning-based identification system for esophageal cancer from CT images.<br>Esophagus, 2021, 18, 612-620.                                                                            | 1.9  | 21        |
| 28 | DEclust: A statistical approach for obtaining differential expression profiles of multiple conditions.<br>PLoS ONE, 2017, 12, e0188285.                                                                      | 2.5  | 20        |
| 29 | STEM KERNELS FOR RNA SEQUENCE ANALYSES. Journal of Bioinformatics and Computational Biology, 2007, 05, 1103-1122.                                                                                            | 0.8  | 18        |
| 30 | COPICAT: a software system for predicting interactions between proteins and chemical compounds.<br>Bioinformatics, 2012, 28, 745-746.                                                                        | 4.1  | 18        |
| 31 | Fast and accurate clustering of noncoding RNAs using ensembles of sequence alignments and secondary structures. BMC Bioinformatics, 2011, 12, S48.                                                           | 2.6  | 16        |
| 32 | Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning. NAR Genomics and Bioinformatics, 2022, 4, lqac012.                                               | 3.2  | 15        |
| 33 | Directed acyclic graph kernels for structural RNA analysis. BMC Bioinformatics, 2008, 9, 318.                                                                                                                | 2.6  | 14        |
| 34 | An extended genovo metagenomic assembler by incorporating paired-end information. PeerJ, 2013, 1, e196.                                                                                                      | 2.0  | 14        |
| 35 | Genome-wide searching with base-pairing kernel functions for noncoding RNAs: computational and expression analysis of snoRNA families in Caenorhabditis elegans. Nucleic Acids Research, 2009, 37, 999-1009. | 14.5 | 11        |
| 36 | A NON-PARAMETRIC BAYESIAN APPROACH FOR PREDICTING RNA SECONDARY STRUCTURES. Journal of Bioinformatics and Computational Biology, 2010, 08, 727-742.                                                          | 0.8  | 11        |

YASUBUMI SAKAKIBARA

| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data. BMC Genomics, 2020, 21, 243.                      | 2.8  | 9         |
| 38 | Chromosomal-scale de novo genome assemblies of Cynomolgus Macaque and Common Marmoset.<br>Scientific Data, 2021, 8, 159.                                                                     | 5.3  | 9         |
| 39 | Development and preliminary validation of a machine learning system for thyroid dysfunction diagnosis based on routine laboratory tests. Communications Medicine, 2022, 2, .                 | 4.2  | 9         |
| 40 | Nordihydroguaiaretic Acid Disrupts the Antioxidant Ability ofHelicobacter pylorithrough the Repression of SodB ActivityIn Vitro. BioMed Research International, 2015, 2015, 1-8.             | 1.9  | 8         |
| 41 | Poly-γ-glutamic acid production of Bacillus subtilis (natto) in the absence of DegQ: A gain-of-function mutation in yabJ gene. Journal of Bioscience and Bioengineering, 2019, 128, 690-696. | 2.2  | 8         |
| 42 | Deep learning integration of molecular and interactome data for protein–compound interaction prediction. Journal of Cheminformatics, 2021, 13, 36.                                           | 6.1  | 8         |
| 43 | MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenome assembly. BMC<br>Bioinformatics, 2021, 22, 427.                                                                   | 2.6  | 8         |
| 44 | Time-Series Analysis of Tumorigenesis in a Murine Skin Carcinogenesis Model. Scientific Reports, 2018,<br>8, 12994.                                                                          | 3.3  | 6         |
| 45 | DNA-based algorithms for learning Boolean formulae. Natural Computing, 2003, 2, 153-171.                                                                                                     | 3.0  | 5         |
| 46 | Software.ncrna.org: web servers for analyses of RNA sequences. Nucleic Acids Research, 2008, 36,<br>W75-W78.                                                                                 | 14.5 | 5         |
| 47 | PSSMTS: position specific scoring matrices on tree structures. Journal of Mathematical Biology, 2007, 56, 201-214.                                                                           | 1.9  | 3         |
| 48 | SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing. Bioinformatics, 2016, 32, i369-i377.                                | 4.1  | 3         |
| 49 | Operon structure optimization by random self-assembly. Natural Computing, 2010, 9, 173-181.                                                                                                  | 3.0  | 2         |
| 50 | Guest editorial to the special issue on grammatical inference. Machine Learning, 2007, 66, 3-5.                                                                                              | 5.4  | 1         |
| 51 | Robust and accurate prediction of noncoding RNAs from aligned sequences. BMC Bioinformatics, 2010, 11, S3.                                                                                   | 2.6  | 1         |
| 52 | A Non-parametric Bayesian Approach for Predicting RNA Secondary Structures. Lecture Notes in Computer Science, 2009, , 286-297.                                                              | 1.3  | 1         |
| 53 | Probabilistic Context-Free Grammars. , 2017, , 1013-1017.                                                                                                                                    |      | 1         |
| 54 | Sequence and Structural Analyses forÂFunctional Non-coding RNAs. Natural Computing Series, 2009, , 63-79.                                                                                    | 2.2  | 0         |

| #  | Article                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Genomic style: yet another deep-learning approach to characterize bacterial genome sequences.<br>Bioinformatics Advances, 2021, 1, . | 2.4 | 0         |