List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conjugation of Palbociclib with MHI-148 Has an Increased Cytotoxic Effect for Breast Cancer Cells and an Altered Mechanism of Action. Molecules, 2022, 27, 880.	3.8	7
2	Disruption of Crystal Packing in Thieno[2,3-b]pyridines Improves Anti-Proliferative Activity. Molecules, 2022, 27, 836.	3.8	1
3	The enantioselective total syntheses of (+)-7-oxohinokinin, (+)-7-oxoarcitin, (+)-conicaol B and (â^`)-isopolygamain. Organic and Biomolecular Chemistry, 2022, 20, 4324-4330.	2.8	2
4	The (apparent) antibody paradox in COVID-19. Expert Review of Clinical Immunology, 2022, 18, 335-345.	3.0	9
5	Severe COVID-19 is a T cell immune dysregulatory disorder triggered by SARS-CoV-2. Expert Review of Clinical Immunology, 2022, 18, 557-565.	3.0	10
6	Tracing the anticancer compound [Ru ^{II} (η ⁶ - <i>p</i> -cymene)(8-oxyquinolinato)Cl] in a biological environment by mass spectrometric methods. Analytical Methods, 2021, 13, 1463-1469.	2.7	6
7	An optimised MALDI-TOF assay for phosphatidylcholine-specific phospholipase C. Analytical Methods, 2021, 13, 491-496.	2.7	4
8	Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery. Pharmaceutical Research, 2021, 38, 179-197.	3.5	23
9	Synthesis, Antiproliferative Activity and Radical Scavenging Ability of 5-O-Acyl Derivatives of Quercetin. Molecules, 2021, 26, 1608.	3.8	7
10	YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair. Pharmacological Research, 2021, 166, 105474.	7.1	13
11	Perspective: diagnostic laboratories should urgently develop T cell assays for SARS-CoV-2 infection. Expert Review of Clinical Immunology, 2021, 17, 421-430.	3.0	24
12	Improving the solubility of anti-proliferative thieno[2,3-b]quinoline-2-carboxamides. Bioorganic and Medicinal Chemistry, 2021, 37, 116092.	3.0	3
13	SOX2OT Long Noncoding RNA Is Regulated by the UPR in Oestrogen Receptor-Positive Breast Cancer. Sci, 2021, 3, 26.	3.0	2
14	Perspective: the nose and the stomach play a critical role in the NZACE2-PÄŧari* (modified ACE2) drug treatment project of SARS-CoV-2 infection. Expert Review of Clinical Immunology, 2021, 17, 553-560.	3.0	10
15	Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs. Oncology and Therapy, 2021, 9, 541-556.	2.6	11
16	Common Variable Immunodeficiency Disorders, T-Cell Responses to SARS-CoV-2 Vaccines, and the Risk of Chronic COVID-19. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3575-3583.	3.8	41
17	Zebularine suppressed gemcitabine-induced senescence and improved the cellular and plasma pharmacokinetics of gemcitabine, augmented by liposomal co-delivery. International Journal of Pharmaceutics, 2021, 602, 120659.	5.2	10
18	Development of 2-Morpholino-N-hydroxybenzamides as anti-proliferative PC-PLC inhibitors. Bioorganic Chemistry, 2021, 114, 105152.	4.1	9

#	Article	IF	CITATIONS
19	Response to letter to the editor: the clinical utility of diagnostic T cell assays for COVID-19. Expert Review of Clinical Immunology, 2021, 17, 1159-1161.	3.0	5
20	ldentification of novel Atg3-Atg8 inhibitors using virtual screening for autophagy modulation. Bioorganic Chemistry, 2021, 114, 105092.	4.1	5
21	Incorporation of a Nitric Oxide Donating Motif into Novel PC-PLC Inhibitors Provides Enhanced Anti-Proliferative Activity. International Journal of Molecular Sciences, 2021, 22, 11518.	4.1	1
22	Tethered Aryl Groups Increase the Activity of Anti-Proliferative Thieno[2,3-b]Pyridines by Targeting a Lipophilic Region in the Active Site of PI-PLC. Pharmaceutics, 2021, 13, 2020.	4.5	6
23	Production of Extracellular Vesicles Using a CELLine Adherent Bioreactor Flask. Methods in Molecular Biology, 2021, , 183-192.	0.9	8
24	Common Variable Immunodeficiency Disorders as a Model for Assessing COVID-19 Vaccine Responses in Immunocompromised Patients. Frontiers in Immunology, 2021, 12, 798389.	4.8	6
25	BIRC5/Survivin is a novel ATG12–ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy, 2020, 16, 1296-1313.	9.1	78
26	Discovery of novel phosphatidylcholine-specific phospholipase C drug-like inhibitors as potential anticancer agents. European Journal of Medicinal Chemistry, 2020, 187, 111919.	5.5	10
27	A Multitargeted Approach: Organorhodium Anticancer Agent Based on Vorinostat as a Potent Histone Deacetylase Inhibitor. Angewandte Chemie - International Edition, 2020, 59, 14609-14614.	13.8	22
28	The SMAC mimetic LCL161 is a direct ABCB1/MDR1-ATPase activity modulator and BIRC5/Survivin expression down-regulator in cancer cells. Toxicology and Applied Pharmacology, 2020, 401, 115080.	2.8	12
29	Pyruvate anaplerosis is a mechanism of resistance to pharmacological glutaminase inhibition in triple-receptor negative breast cancer. BMC Cancer, 2020, 20, 470.	2.6	21
30	Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances, 2020, 10, 19089-19105.	3.6	34
31	Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. Journal of Biomedical Science, 2020, 27, 31.	7.0	57
32	Development, synthesis and biological investigation of a novel class of potent PC-PLC inhibitors. European Journal of Medicinal Chemistry, 2020, 191, 112162.	5.5	8
33	SOX2OT Long Noncoding RNA Is Regulated by the UPR in Oestrogen Receptor-Positive Breast Cancer. Sci, 2020, 2, 24.	3.0	1
34	Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Research, 2020, 9, 1362.	1.6	5
35	A Multitargeted Approach: Organorhodium Anticancer Agent Based on Vorinostat as a Potent Histone Deacetylase Inhibitor. Angewandte Chemie, 2020, 132, 14717-14722.	2.0	4
36	Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Research, 2020, 9, 1362.	1.6	10

#	Article	IF	CITATIONS
37	Inhaled modified angiotensin converting enzyme 2 (ACE2) as a decoy to mitigate SARS-CoV-2 infection. New Zealand Medical Journal, 2020, 133, 112-118.	0.5	7
38	The cytotoxic potential of cationic triangulenes against tumour cells. MedChemComm, 2019, 10, 1881-1891.	3.4	9
39	Anticancer organorhodium and -iridium complexes with low toxicity <i>in vivo</i> but high potency <i>in vitro</i> : DNA damage, reactive oxygen species formation, and haemolytic activity. Chemical Communications, 2019, 55, 12016-12019.	4.1	40
40	Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer?. Journal of Controlled Release, 2019, 305, 89-100.	9.9	45
41	Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topoteÑan on inÂvivo tumor models. European Journal of Medicinal Chemistry, 2019, 161, 581-593.	5.5	52
42	Derivation of Breast Cancer Cell Lines Under Physiological (5%) Oxygen Concentrations. Frontiers in Oncology, 2018, 8, 425.	2.8	16
43	A Bioactive <scp>l</scp> -Phenylalanine-Derived Arene in Multitargeted Organoruthenium Compounds: Impact on the Antiproliferative Activity and Mode of Action. Inorganic Chemistry, 2018, 57, 8521-8529.	4.0	26
44	mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS ONE, 2018, 13, e0201464.	2.5	38
45	Investigation into Improving the Aqueous Solubility of the Thieno[2,3-b]pyridine Anti-Proliferative Agents. Molecules, 2018, 23, 145.	3.8	15
46	Synthesis of N -benzyl-des- D -ring lamellarin K via an acyl-Claisen/Paal-Knorr approach. Tetrahedron, 2017, 73, 1881-1894.	1.9	13
47	Synthesis and antiproliferative activity of 2-chlorophenyl carboxamide thienopyridines. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 135-138.	2.2	13
48	Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing. International Journal of Molecular Sciences, 2017, 18, 1378.	4.1	45
49	Endocrine Therapy of Estrogen Receptor-Positive Breast Cancer Cells: Early Differential Effects on Stem Cell Markers. Frontiers in Oncology, 2017, 7, 184.	2.8	32
50	Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3- b]pyridine anticancer compound. Drug Design, Development and Therapy, 2017, Volume11, 759-769.	4.3	11
51	GPCR Modulation of Thieno[2,3-b]pyridine Anti-Proliferative Agents. Molecules, 2017, 22, 2254.	3.8	12
52	Epistatic interactions between mutations of TACI (<i>TNFRSF13B</i>) and <i>TCF3</i> result in a severe primary immunodeficiency disorder and systemic lupus erythematosus. Clinical and Translational Immunology, 2017, 6, e159.	3.8	54
53	Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells. Frontiers in Pharmacology, 2016, 7, 81.	3.5	53
54	ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. Biology Direct, 2016, 11, 62.	4.6	71

#	Article	IF	CITATIONS
55	Synthesis and biological activity of pyrrole analogues of combretastatin A-4. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3001-3005.	2.2	34
56	Selected GRIN2A mutations in melanoma cause oncogenic effects that can be modulated by extracellular glutamate. Cell Calcium, 2016, 60, 384-395.	2.4	11
57	Synthesis of 3-Amino-2-carboxamide Tetrahydropyrrolo[2,3-b]quinolines. Synlett, 2016, 27, 2811-2814.	1.8	7
58	Evidence that phospholipase C is involved in the antitumour action of NSC768313, a new thieno[2,3-b]pyridine derivative. Cancer Cell International, 2016, 16, 18.	4.1	27
59	Synthesis and cytotoxicity of thieno[2,3-b]quinoline-2-carboxamide and cycloalkyl[b]thieno[3,2-e]pyridine-2-carboxamide derivatives. Bioorganic and Medicinal Chemistry, 2016, 24, 1142-1154.	3.0	19
60	The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance. Methods in Molecular Biology, 2016, 1395, 207-227.	0.9	20
61	Potentiation of Growth Inhibitory Responses of the mTOR Inhibitor Everolimus by Dual mTORC1/2 Inhibitors in Cultured Breast Cancer Cell Lines. PLoS ONE, 2015, 10, e0131400.	2.5	43
62	Overexpression of miR-595 and miR-1246 in the Sera of Patients with Active Forms of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 520-530.	1.9	47
63	Epigenetic regulation in human melanoma: past and future. Epigenetics, 2015, 10, 103-121.	2.7	237
64	In silico discovery and validation of potent small-molecule inhibitors targeting the activation function 2 site of human oestrogen receptor α. Breast Cancer Research, 2015, 17, 27.	5.0	20
65	A synthesis, in silico, in vitro and in vivo study of thieno[2,3-b]pyridine anticancer analogues. MedChemComm, 2015, 6, 1987-1997.	3.4	39
66	Synthesis of aza-derivatives of tetrahydrofuran lignan natural products. Tetrahedron, 2015, 71, 9439-9456.	1.9	13
67	<scp>YM155</scp> downâ€regulates survivin and <scp>XIAP</scp> , modulates autophagy and induces autophagyâ€dependent <scp>DNA</scp> damage in breast cancer cells. British Journal of Pharmacology, 2015, 172, 214-234.	5.4	79
68	Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency. American Journal of Human Genetics, 2015, 97, 389-403.	6.2	232
69	Leukocyte integrin α4β7 associates with heat shock protein 70. Molecular and Cellular Biochemistry, 2015, 409, 263-269.	3.1	8
70	Virtual screening for novel Atg5–Atg16 complex inhibitors for autophagy modulation. MedChemComm, 2015, 6, 239-246.	3.4	17
71	SUâ€Eâ€Tâ€661: Quantitative MRI Assessment of a Novel Directionâ€Modulated Brachytherapy Tandem Applicator for Cervical Cancer. Medical Physics, 2015, 42, 3488-3488.	3.0	1
72	SUâ€Eâ€Tâ€208: Comparison of MR Image Quality of Various Brachytherapy Applicators for Cervical Cancer. Medical Physics, 2015, 42, 3380-3380.	3.0	0

#	Article	IF	CITATIONS
73	Relationships between Signaling Pathway Usage and Sensitivity to a Pathway Inhibitor: Examination of Trametinib Responses in Cultured Breast Cancer Lines. PLoS ONE, 2014, 9, e105792.	2.5	23
74	Evidence for the Existence of Triple-Negative Variants in the MCF-7 Breast Cancer Cell Population. BioMed Research International, 2014, 2014, 1-7.	1.9	40
75	Evidence That GRIN2A Mutations in Melanoma Correlate with Decreased Survival. Frontiers in Oncology, 2014, 3, 333.	2.8	16
76	The effect of a thieno[2,3-b]pyridine PLC-γ inhibitor on the proliferation, morphology, migration and cell cycle of breast cancer cells. MedChemComm, 2014, 5, 99-106.	3.4	36
77	The development of thieno[2,3-b]pyridine analogues as anticancer agents applying in silico methods. MedChemComm, 2014, 5, 186.	3.4	22
78	Synthesis and cytotoxicity of thieno[2,3-b]pyridine and furo[2,3-b]pyridine derivatives. European Journal of Medicinal Chemistry, 2014, 86, 420-437.	5.5	56
79	Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Frontiers in Genetics, 2014, 5, 379.	2.3	76
80	Emerging Role of Long Non-Coding RNA SOX2OT in SOX2 Regulation in Breast Cancer. PLoS ONE, 2014, 9, e102140.	2.5	119
81	The Cytotoxicity of Duocarmycin Analogues is Mediated through Alkylation of DNA, not Aldehyde Dehydrogenase 1: A Comment. Angewandte Chemie - International Edition, 2013, 52, 5442-5446.	13.8	22
82	Comparison of responses of human melanoma cell lines to MEK and BRAF inhibitors. Frontiers in Genetics, 2013, 4, 66.	2.3	40
83	Heterogeneity of expression of epithelial–mesenchymal transition markers in melanocytes and melanoma cell lines. Frontiers in Genetics, 2013, 4, 97.	2.3	65
84	Abstract 3452: YM155 induces autophagy-dependent cell death in Tamoxifen-resistant breast cancer cells , 2013, , .		0
85	Identification of cyclohexanone derivatives that act as catalytic inhibitors of topoisomerase I: effects on tamoxifen-resistant MCF-7 cancer cells. Investigational New Drugs, 2012, 30, 2103-2112.	2.6	11
86	Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines. BMC Cancer, 2012, 12, 141.	2.6	20
87	Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells. Cancer Biology and Therapy, 2011, 11, 938-946.	3.4	74
88	Associations between HLA Class I Alleles and Escape Mutations in the Hepatitis B Virus Core Gene in New Zealand-Resident Tongans. Journal of Virology, 2010, 84, 621-629.	3.4	25
89	MCF-7 breast cancer cells selected for tamoxifen resistance acquire new phenotypes differing in DNA content, phospho-HER2 and PAX2 expression, and rapamycin sensitivity. Cancer Biology and Therapy, 2010, 9, 717-724.	3.4	54
90	Mucosal Addressin Cell-Adhesion Molecule-1 Controls Plasma-Cell Migration and Function in the Small Intestine of Mice. Gastroenterology, 2009, 137, 924-933.	1.3	38

#	Article	IF	CITATIONS
91	IL4, IL10, IL16, and TNF polymorphisms in New Zealand Caucasian Crohn's disease patients. International Journal of Colorectal Disease, 2008, 23, 335-337.	2.2	13
92	Alternatively spliced forms of the P180 ribosome receptor differ in their ability to induce the proliferation of rough endoplasmic reticulum. Cell Biology International, 2008, 32, 473-483.	3.0	9
93	Nucleic Acid from Saliva and Salivary Cells for Noninvasive Genotyping of Crohn's Disease Patients. Genetic Testing and Molecular Biomarkers, 2008, 12, 587-589.	1.7	5
94	Splicing of NOD2 (CARD15) RNA transcripts. Molecular Immunology, 2007, 44, 284-294.	2.2	24
95	<i>TLR2</i> , <i>TLR4</i> and <i>TLR9</i> polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1760-1766.	2.8	71
96	Polymorphisms in NFKBIA and ICAM-1 genes in New Zealand Caucasian Crohn's disease patients. Journal of Gastroenterology and Hepatology (Australia), 2007, 22, 1666-1670.	2.8	9
97	Peroxisome proliferator-activated receptor-γ gene polymorphisms and Crohn's disease. International Journal of Colorectal Disease, 2007, 22, 453-454.	2.2	4
98	Colony-stimulating factor-1 receptor gene polymorphisms and Crohn's disease. International Journal of Colorectal Disease, 2007, 22, 995-996.	2.2	3
99	PPAR-γ and Crohn's Disease in New Zealand. Gastroenterology, 2006, 130, 2249-2250.	1.3	2
100	Polymorphisms in the organic cation transporter genes SLC22A4 and SLC22A5 and Crohn's disease in a New Zealand Caucasian cohort. Immunology and Cell Biology, 2006, 84, 233-236.	2.3	50
101	A pseudosymmetric cell adhesion regulatory domain in the β7 tail of the integrin α4β7 that interacts with focal adhesion kinase and src. European Journal of Immunology, 2006, 36, 2203-2214.	2.9	13
102	Polymorphisms of CARD15/NOD2 and CD14 genes in New Zealand Crohn's disease patients. Immunology and Cell Biology, 2005, 83, 498-503.	2.3	22
103	Bioassay detects soluble MAdCAMâ€i in body fluids. Immunology and Cell Biology, 2004, 82, 400-409.	2.3	15
104	Mucosal vascular addressin cell adhesion moleculeâ€1 is expressed outside the endothelial lineage on fibroblasts and melanoma cells. Immunology and Cell Biology, 2003, 81, 320-327.	2.3	9
105	Mouse B7-H3 induces antitumor immunity. Gene Therapy, 2003, 10, 1728-1734.	4.5	112
106	Regression of solid tumors by engineered overexpression of von Hippel–Lindau tumor suppressor protein and antisense hypoxia-inducible factor-11±. Gene Therapy, 2003, 10, 2081-2089.	4.5	29
107	Angiostatin enhances B7.1-mediated cancer immunotherapy independently of effects on vascular endothelial growth factor expression. Cancer Gene Therapy, 2001, 8, 719-727.	4.6	30
108	Gene transfer of antisense hypoxia inducible factor-1 α enhances the therapeutic efficacy of cancer immunotherapy. Gene Therapy, 2001, 8, 638-645.	4.5	148

#	Article	IF	CITATIONS
109	β7 integrins contribute to demyelinating disease of the central nervous system. Journal of Neuroimmunology, 2000, 103, 146-152.	2.3	87
110	The integrin α10 subunit: expression pattern, partial gene structure, and chromosomal localization. Cytogenetic and Genome Research, 1999, 87, 238-244.	1.1	14
111	The small GTP-binding proteins Rho and Rac induce T cell adhesion to the mucosal addressin MAdCAM-1 in a hierarchical fashion. European Journal of Immunology, 1999, 29, 2875-2885.	2.9	8
112	Cloning and Characterization of a Novel β Integrin-Related cDNA Coding for the Protein TIED ("Ten β) Tj ETQ Integrin Stalk Structure. Genomics, 1999, 56, 169-178.)q0 0 0 rg 2.9	BT /Overlock 3 55
113	Cloning, Sequence Analysis, and Chromosomal Localization of the Novel Human Integrin α11 Subunit (ITGA11). Genomics, 1999, 60, 179-187.	2.9	29
114	The β7 integrin gene (Itgb-7) promoter is responsive to TGF-β1: defining control regions. Immunogenetics, 1998, 48, 184-195.	2.4	50
115	A Novel Extracellular Domain Variant of the Human Integrin α7 Subunit Generated by Alternative Intron Splicing. Biochemical and Biophysical Research Communications, 1998, 243, 317-325.	2.1	17
116	Identification of Multiple Forms of 180-kDa Ribosome Receptor in Human Cells. DNA and Cell Biology, 1998, 17, 449-460.	1.9	23
117	Assignment <footref rid="foot01">¹</footref> of the murine kinectin gene (<i>Ktn1</i>) to mouse chromosome 14C2 by fluorescence in situ hybridization. Cytogenetic and Genome Research, 1998, 81, 87-88.	1.1	2
118	Genomic organization, chromosomal mapping, and analysis of the 5' promoter region of the human MAdCAM-1 gene. Immunogenetics, 1997, 46, 111-119.	2.4	15
119	Cloning of novel kinectin splice variants with alternative C-termini: Structure, distribution and evolution of mouse kinectin. Immunology and Cell Biology, 1996, 74, 421-433.	2.3	25
120	Cloning of the mucosal addressin MAdCAM-1 from human brain: Identification of novel alternatively spliced transcripts. Immunology and Cell Biology, 1996, 74, 490-496.	2.3	24
121	Critical role for β7 integrins in formation of the gut-associated lymphoid tissue. Nature, 1996, 382, 366-370.	27.8	535
122	Construction and Adhesive Properties of a Soluble MAdCAM-1-Fc Chimera Expressed in a Baculovirus System: Phylogenetic Conservation of Receptor-Ligand Interaction. Scandinavian Journal of Immunology, 1995, 42, 235-247.	2.7	20
123	Isolation of the 5? region of the human ITGB7 integrin gene. Immunogenetics, 1994, 39, 375-6.	2.4	3
124	Cloning of a gene encoding a human leukocyte protein characterised by extensive heptad repeats. Gene, 1994, 144, 221-228.	2.2	14
125	The delta-subunit of murine guanine nucleotide exchange factor eIF-2B. Characterization of cDNAs predicts isoforms differing at the amino-terminal end. Journal of Biological Chemistry, 1994, 269, 30517-23.	3.4	6
126	The mouse β7 integrin gene promoter: transcriptional regulation of the leukocyte integrins LPAM-1 and M290. International Immunology, 1993, 5, 551-558.	4.0	18

#	Article	IF	CITATIONS
127	The gene organization of the human β7 subunit, the common β subunit of the leukocyte integrins HML-1 and LPAM-1. International Immunology, 1992, 4, 1031-1040.	4.0	18
128	Immunologic and structural relatedness of the integrin β7complex and the human intraepithelial lymphocyte antigen HML-1. FEBS Letters, 1992, 296, 25-28.	2.8	12
129	Mapping of the human integrin ?7 gene (ITG?7) to 12q13.13 by non-isotopic in situ hybridization. Mammalian Genome, 1992, 2, 272-273.	2.2	9
130	Chromosomal ocations fo the genes coding for the integrin ?6 and ?7 subunits. Immunogenetics, 1992, 35, 58-61.	2.4	12
131	Molecular cloning of the mouse integrin beta 7 subunit Journal of Biological Chemistry, 1992, 267, 7352-7358.	3.4	37
132	Molecular cloning of the mouse integrin beta 7 subunit. Journal of Biological Chemistry, 1992, 267, 7352-8.	3.4	28
133	Identity between the novel integrin β7 subunit and an antigen found highly expressed on intraepithelial lymphocytes in the small intestine. Biochemical and Biophysical Research Communications, 1991, 176, 1443-1449.	2.1	40
134	Isolation of murine fetal thymus cell lines after infection with recombinant retroviruses containing the v-myc and v-Ha-ras oncogenes. Journal of Immunology, 1989, 142, 3746-53.	0.8	8
135	Expression of functional human interleukinâ€2 receptors in murine interleukinâ€3â€dependent cells. Immunology and Cell Biology, 1988, 66, 319-330.	2.3	0
136	In vitro breast cancer models for studying mechanisms of resistance to endocrine therapy. Exploration of Targeted Anti-tumor Therapy, 0, , 297-320.	0.8	3