
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5713137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arthropod nuclear receptors and their role in molting. FEBS Journal, 2009, 276, 6128-6157.	4.7	215
2	Nonsteroidal Ecdysone Agonists. Vitamins and Hormones, 2005, 73, 131-173.	1.7	89
3	RPEL Proteins Are the Molecular Targets for CCG-1423, an Inhibitor of Rho Signaling. PLoS ONE, 2014, 9, e89016.	2.5	78
4	Molecular cloning, expression analysis and functional confirmation of ecdysone receptor and ultraspiracle from the Colorado potato beetle Leptinotarsa decemlineata. FEBS Journal, 2005, 272, 4114-4128.	4.7	77
5	A cellâ€based highâ€throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds. FASEB Journal, 2004, 18, 134-136.	0.5	67
6	Inhibition of [3H]ponasterone A binding by ecdysone agonists in the intact Sf-9 cell line. Steroids, 2000, 65, 537-542.	1.8	66
7	Binding affinity of nonsteroidal ecdysone agonists against the ecdysone receptor complex determines the strength of their molting hormonal activity. FEBS Journal, 2003, 270, 4095-4104.	0.2	58
8	High-throughput screening of ecdysone agonists using a reporter gene assay followed by 3-D QSAR analysis of the molting hormonal activity. Bioorganic and Medicinal Chemistry, 2006, 14, 1143-1159.	3.0	58
9	Inhibition of [3H]ponasterone A binding by ecdysone agonists in the intact Kc cell line. Insect Biochemistry and Molecular Biology, 2002, 32, 175-180.	2.7	57
10	Prediction of the binding mode of imidacloprid and related compounds to house-fly head acetylcholine receptors using three-dimensional QSAR analysis. Pest Management Science, 1998, 54, 134-144.	0.4	54
11	Quantitative structure-activity analysis of larvicidal 1-(substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 139-147.	347 Td (b 0.4	enzoyl)-2-be 50
12	Quantitative structure-activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1984, 21, 309-325.	3.6	48
13	Analysis and prediction of hydrophobicity parameters of substituted acetanilides, benzamides and related aromatic compounds. Environmental Toxicology and Chemistry, 1992, 11, 901-916.	4.3	48
14	Quantitative structure-activity studies of insect growth regulators xiv. Three-dimensional quantitative structure-activity relationship of ecdysone agonists including dibenzoylhydrazine analogs. Pest Management Science, 1998, 53, 267-277.	0.4	45
15	Quantitative Structure-Activity Relationships of Larvicidal <i>N</i> -[5-(Substituted phenyl)-1, 3, 4-thiadiazol-2-yl]-benzamides in the Inhibition of <i>N</i> -Acetylglucosamine Incorporation into a Cultured Integument System. Journal of Pesticide Sciences, 1996, 21, 195-201.	1.4	45
16	Metabolism of Imidacloprid in Houseflies. Journal of Pesticide Sciences, 2004, 29, 110-116.	1.4	44
17	Comparative ecdysteroid action of ring-substituted dibenzoylhydrazines inSpodoptera exigua. Archives of Insect Biochemistry and Physiology, 1999, 41, 42-53.	1.5	43
18	Virtual Screening for Ligands of the Insect Molting Hormone Receptor. Journal of Chemical Information and Modeling, 2011, 51, 296-305.	5.4	43

#	Article	IF	CITATIONS
19	Molting hormonal and larvicidal activities of aliphatic acyl analogs of dibenzoylhydrazine insecticides. Steroids, 1997, 62, 638-642.	1.8	42
20	Quantitative structure-activity studies of insect growth regulators: XVI. Substituent effects of dibenzoylhydrazines on the insecticidal activity to Colorado potato beetleLeptinotarsa decemlineata. Pest Management Science, 1999, 55, 909-918.	0.4	41
21	A Novel Amphipathic Linear Peptide with Both Insect Toxicity and Antimicrobial Activity from the Venom of the Scorpion <i>Isometrus maculatus</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 364-369.	1.3	39
22	Relationships between structure and molting hormonal activity of tebufenozide, methoxyfenozide, and their analogs in cultured integument system of Chilo suppressalis Walkerâ~†. Steroids, 2000, 65, 117-123.	1.8	36
23	Insecticidal activity and nicotinic acetylcholine receptor binding of dinotefuran and its analogues in the housefly,Musca domestica. Pest Management Science, 2003, 59, 1093-1100.	3.4	36
24	Comparison of the activity of nonâ€steroidal ecdysone agonists between dipteran and lepidopteran insects, using cellâ€based EcR reporter assays. Pest Management Science, 2010, 66, 1215-1229.	3.4	36
25	3-D QSAR analysis of inhibition of murine soluble epoxide hydrolase (MsEH) by benzoylureas, arylureas, and their analogues. Bioorganic and Medicinal Chemistry, 2000, 8, 2663-2673.	3.0	34
26	Three-dimensional quantitative structure-activity relationship analysis of acyclic and cyclic chic chic chic chic chicon chicon chicon control insecticides. Pest Management Science, 2000, 56, 509-515.	3.4	33
27	Use of ab Initio Calculations To Predict the Biological Potency of Carboxylesterase Inhibitors. Journal of Medicinal Chemistry, 2002, 45, 5576-5593.	6.4	33
28	Classical and three-dimensional QSAR for the inhibition of [3H]ponasterone A binding by diacylhydrazine-type ecdysone agonists to insect Sf-9 cells. Bioorganic and Medicinal Chemistry, 2005, 13, 1333-1340.	3.0	33
29	Molecular cloning of the ecdysone receptor and the retinoid X receptor from the scorpion <i>Liocheles australasiae</i> . FEBS Journal, 2007, 274, 6191-6203.	4.7	33
30	Comparison of benzil and trifluoromethyl ketone (TFK)-mediated carboxylesterase inhibition using classical and 3D-quantitative structure–activity relationship analysis. Bioorganic and Medicinal Chemistry, 2009, 17, 149-164.	3.0	33
31	Correlations of the electrophysiological activity of neonicotinoids with their binding and insecticidal activities. Pest Management Science, 2003, 59, 1023-1030.	3.4	32
32	Activity of ecdysone analogs in enhancing N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis. Steroids, 1995, 60, 401-405.	1.8	30
33	Quantitative structure-activity relationships of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1991, 40, 12-26.	3.6	28
34	Nicotinic acetylcholine receptor binding of imidacloprid-related diaza compounds with various ring sizes and their insecticidal activity againstMusca domestica. Pest Management Science, 2002, 58, 483-490.	3.4	28
35	Stereoselective synthesis of (22R)- and (22S)-castasterone/ponasterone A hybrid compounds and evaluation of their molting hormone activity. Steroids, 2004, 69, 483-493.	1.8	28
36	Quantitative structure-activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1992, 43, 141-151.	3.6	27

#	Article	IF	CITATIONS
37	Anti-Insect Toxin 5 (Aalts) from Androctonus Australis. FEBS Journal, 1997, 246, 496-501.	0.2	27
38	Three-Dimensional Quantitative Structure—Activity Analysis of Steroidal and Dibenzoylhydrazine-Type Ecdysone Agonists. ACS Symposium Series, 1995, , 288-301.	0.5	26
39	Structures and Biological Activities of Phytotoxins Produced by the Plant Pathogenic Fungus <i>Bipolaris cynodontis</i> cynA. Journal of Pesticide Sciences, 1998, 23, 281-288.	1.4	26
40	Synthesis of Brassinosteroids of Varying Acyl Side Chains and Evaluation of Their Brassinolide-like Activity. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1097-1105.	1.3	26
41	Quantitative structure-activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1987, 27, 156-164.	3.6	25
42	Quantitative structure-activity studies of insect growth regulators. XI. Stimulation and inhibition ofN-acetylglucosamine incorporation in a cultured integument system by substitutedN-tert-butyl-N,Nâ€2-dibenzoylhydrazines. Pest Management Science, 1995, 43, 339-345.	0.4	25
43	Binding activity of substituted benzyl derivatives of chloronicotinyl insecticides to housefly-head membranes, and its relationship to insecticidal activity against the houseflyMusca domestica. Pest Management Science, 2000, 56, 875-881.	3.4	25
44	Synthesis of ponasterone A derivatives with various steroid skeleton moieties and evaluation of their binding to the ecdysone receptor of Kc cells. Steroids, 2008, 73, 1452-1464.	1.8	25
45	LC/MS/MS identification of 20-hydroxyecdysone in a scorpion (Liocheles australasiae) and its binding affinity to inÂvitro-translated molting hormone receptors. Insect Biochemistry and Molecular Biology, 2011, 41, 932-937.	2.7	25
46	Insecticidal and binding activities ofN3-substituted imidacloprid derivatives against the houseflyMusca domestica and the ?-bungarotoxin binding sites of nicotinic acetylcholine receptors. Pest Management Science, 2001, 57, 810-814.	3.4	24
47	Quantitative structure-activity studies of insect growth regulators: XVIII. Effects of substituents on the aromatic moiety of dibenzoylhydrazines on larvicidal activity against the Colorado potato beetleLeptinotarsa decemlineata. Pest Management Science, 2001, 57, 858-865.	3.4	24
48	Molecular cloning and expression analysis of ultraspiracle (USP) from the rice stem borer Chilo suppressalis. Insect Biochemistry and Molecular Biology, 2003, 33, 41-49.	2.7	24
49	Quantitative structure-activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1987, 27, 143-155.	3.6	23
50	Structure-based virtual screening for insect ecdysone receptor ligands using MM/PBSA. Bioorganic and Medicinal Chemistry, 2019, 27, 1065-1075.	3.0	23
51	Quantitative structure-activity studies of insect growth regulators: XIX. Effects of substituents on the aromatic moiety of dibenzoylhydrazines on larvicidal activity against the beet armywormSpodoptera exigua. Pest Management Science, 2002, 58, 131-138.	3.4	22
52	Synthesis of 26,27-bisnorcastasterone analogs and analysis of conformation–activity relationship for brassinolide-like activity. Bioorganic and Medicinal Chemistry, 2006, 14, 1761-1770.	3.0	22
53	Genome-wide Identification of Tebufenozide Resistant Genes in the smaller tea tortrix, Adoxophyes honmai (Lepidoptera: Tortricidae). Scientific Reports, 2019, 9, 4203.	3.3	22
54	Inhibition of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis by diflubenzuron. Pesticide Biochemistry and Physiology, 1992, 42, 242-247.	3.6	21

#	Article	IF	CITATIONS
55	QSAR for Binding Affinity of Substituted Dibenzoylhydrazines to Intact Sf-9 Cells. Journal of Pesticide Sciences, 2005, 30, 1-6.	1.4	20
56	Non-steroidal ecdysteroid agonist chromafenozide: Gene induction activity, cell proliferation inhibition and larvicidal activity. Pesticide Biochemistry and Physiology, 2008, 92, 70-76.	3.6	20
57	Quantitative structure-activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1989, 33, 144-157.	3.6	19
58	Effects of the structures of ecdysone receptor (EcR) and ultraspiracle (USP) on the ligand-binding activity of the EcR/USP heterodimer. Journal of Pesticide Sciences, 2007, 32, 379-384.	1.4	19
59	Evaluation of hydrogen bonds of ecdysteroids in the ligand–receptor interactions using a protein modeling system. Bioorganic and Medicinal Chemistry, 2009, 17, 5868-5873.	3.0	19
60	Quantitative structure-activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1985, 23, 7-12.	3.6	18
61	Multidimensional Quantitative Structure–Activity Relationships of Diacylhydrazine Toxicity to Lepidopteran and Coleopteran Insect Pests. QSAR and Combinatorial Science, 2008, 27, 1098-1112.	1.4	18
62	A new dibenzoylhydrazine with insecticidal activity against <i>Anopheles</i> mosquito larvae. Pest Management Science, 2013, 69, 827-833.	3.4	18
63	Quantitative structure—Activity studies of benzoylphenylurea larvicides. Pesticide Biochemistry and Physiology, 1988, 30, 67-78.	3.6	17
64	Assessment of species specificity of moulting accelerating compounds in Lepidoptera: comparison of activity between Bombyx mori and Spodoptera littoralis by in vitro reporter and in vivo toxicity assays. Pest Management Science, 2010, 66, 526-535.	3.4	17
65	Complete de novo sequencing of antimicrobial peptides in the venom of the scorpion Isometrus maculatus. Toxicon, 2017, 139, 1-12.	1.6	16
66	Validity Analysis of a Receptor Binding Assay for Ecdysone Agonists Using Cultured Intact Insect Cells. Journal of Pesticide Sciences, 2003, 28, 55-57.	1.4	16
67	Use of classical and 3-D QSAR to examine the hydration state of juvenile hormone esterase inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 5101-5116.	3.0	15
68	Synthesis of a Castasterone/Ponasterone Hybrid Compound and Evaluation of Its Molting Hormone-Like Activity. Journal of Pesticide Sciences, 2003, 28, 188-193.	1.4	15
69	Structure–Activity Relationships of Ecdysteroids and Non-Steroidal Ecdysone Agonists. Advances in Insect Physiology, 2012, 43, 251-298.	2.7	15
70	Chemical synthesis of a twoâ€domain scorpion toxin LaIT2 and its singleâ€domain analogs to elucidate structural factors important for insecticidal and antimicrobial activities. Journal of Peptide Science, 2018, 24, e3133.	1.4	15
71	Stereospecific Inhibitory Effects of CCG-1423 on the Cellular Events Mediated by Myocardin-Related Transcription Factor A. PLoS ONE, 2015, 10, e0136242.	2.5	15
72	Diflubenzuron stimulates phosphorylation of a 39 kDa integumental protein from newly molted American cockroach (Periplaneta americana). Insect Biochemistry and Molecular Biology, 1996, 26, 891-898.	2.7	14

#	Article	IF	CITATIONS
73	Structural requirement and stereospecificity of tetrahydroquinolines as potent ecdysone agonists. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1715-1718.	2.2	14
74	Asymmetric synthesis of tetrahydroquinolineâ€ŧype ecdysone agonists and QSAR for their binding affinity against <scp><i>Aedes albopictus</i></scp> ecdysone receptors. Pest Management Science, 2019, 75, 115-124.	3.4	14
75	Properties of ecdysteroid receptors from diverse insect species in a heterologous cell culture system – a basis for screening novel insecticidal candidates. FEBS Journal, 2009, 276, 3087-3098.	4.7	13
76	Quantitative evaluation of the molting hormone activity in coleopteran cells established from the Colorado potato beetle, Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology, 2012, 104, 1-8.	3.6	13
77	QSAR of 2,4-diphenyl-1,3-oxazolines for ovicidal activity against the two-spotted spider mite Tetranychus urticae. Journal of Pesticide Sciences, 2006, 31, 409-416.	1.4	12
78	Transcriptionâ€inducing activity of natural and synthetic juvenile hormone agonists through the <i>Drosophila</i> Methopreneâ€tolerant protein. Pest Management Science, 2020, 76, 2316-2323.	3.4	12
79	Effects of insect-growth-regulatory benzimidazole derivatives on cultured integument of the rice stem borer and mitochondria from rat liver Agricultural and Biological Chemistry, 1985, 49, 3569-3573.	0.3	10
80	Comparison of the Binding Activities of Chloronicotinyl Insecticides toward the Nicotinic Acetylcholine Receptors from Rats and Houseflies. Journal of Pesticide Sciences, 2000, 25, 40-43.	1.4	10
81	In vitro and in vivo evaluations of the P-glycoprotein-mediated efflux of dibenzoylhydrazines. Toxicology and Applied Pharmacology, 2016, 298, 40-47.	2.8	10
82	In silico exploration for agonists/antagonists of brassinolide. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1709-1714.	2.2	10
83	Brassinolide-like activity of castasterone analogs with varied side chains against rice lamina inclination. Bioorganic and Medicinal Chemistry, 2017, 25, 4566-4578.	3.0	10
84	Discovery of a nonsteroidal brassinolide-like compound, NSBR1. Journal of Pesticide Sciences, 2017, 42, 105-111.	1.4	10
85	Virtual screening identifies a novel piperazine-based insect juvenile hormone agonist. Journal of Pesticide Sciences, 2021, 46, 68-74.	1.4	10
86	A simple synthesis of 6-deoxoteasterone and its 20-epimer. Tetrahedron Letters, 2004, 45, 2767-2769.	1.4	9
87	Isolation and Characterization of an Anti-Insect β-Toxin from the Venom of the Scorpion <i>Isometrus maculatus</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 205-207.	1.3	9
88	New reporter gene assays for detecting natural and synthetic molting hormone agonists using yeasts expressing ecdysone receptors of various insects. FEBS Open Bio, 2017, 7, 995-1008.	2.3	9
89	Isolation and characterization of the insecticidal, two-domain toxin LaIT3 from the <i>Liocheles australasiae</i> scorpion venom. Bioscience, Biotechnology and Biochemistry, 2019, 83, 2183-2189.	1.3	9
90	Isolation and Characterization of Insecticidal Toxins from the Venom of the North African Scorpion, Buthacus leptochelys. Toxins, 2019, 11, 236.	3.4	9

#	Article	IF	CITATIONS
91	Measurement of Receptor-Binding Activity of Non-Steroidal Ecdysone Agonists Using in vitro Expressed Receptor Proteins (EcR/USP Complex) of <i>Chilo suppressalis</i> and <i>Drosophila melanogaster</i> . ACS Symposium Series, 2004, , 191-200.	0.5	8
92	Estimation of the hydrophobicity of 2,4-diphenyl-1,3-oxazoline analogs and QSAR analysis of their ovicidal activity against Tetranycus urticae. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4080-4084.	2.2	8
93	Structure–activity relationship of imidazothiadiazole analogs for the binding to the ecdysone receptor of insect cells. Pesticide Biochemistry and Physiology, 2015, 120, 40-50.	3.6	8
94	Preparation of Functional Ecdysteroid Receptor Proteins (EcR and USP) Using a Wheat Germ Cell-Free Protein Synthesis System. Journal of Pesticide Sciences, 2004, 29, 189-194.	1.4	8
95	Quantitative structure—activity relationships of light-dependent herbicidal 4-pyridone-3-carboxanilides I. Effect of benzene ring substituents at the anilide moiety. Pest Management Science, 1992, 34, 17-25.	0.4	7
96	Quantitative structure—activity relationships of light-dependent herbicidal 4-pyridone-3-carboxanilide derivatives II. Substituent effects of anilide and pyridone moieties. Pest Management Science, 1992, 34, 27-36.	0.4	7
97	Structure–activity relationships of dibenzoylhydrazines for the inhibition of P-glycoprotein-mediated quinidine transport. Bioorganic and Medicinal Chemistry, 2016, 24, 3184-3191.	3.0	7
98	Synthesis and inhibitory activity of mechanism-based 4-coumaroyl-CoA ligase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 2466-2474.	3.0	7
99	Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon, 2021, 191, 25-37.	1.6	7
100	Nonsteroidal ecdysone receptor agonists use a water channel for binding to the ecdysone receptor complex EcR/USP. Journal of Pesticide Sciences, 2021, 46, 88-100.	1.4	7
101	Effects of Insect-Growth-Regulatory Benzimidazole Derivatives on Cultured Integument of the Rice Stem Borer and Mitochondria from Rat Liver. Agricultural and Biological Chemistry, 1985, 49, 3569-3573.	0.3	6
102	Substituent Effect on the Thermodynamic Solubility of Structural Analogs: Relative Contribution of Crystal Packing and Hydration. Journal of Pharmaceutical Sciences, 2014, 103, 3524-3531.	3.3	6
103	Receptor-binding affinity and larvicidal activity of tetrahydroquinoline-type ecdysone agonists against <i>Aedes albopictus</i> . Journal of Pesticide Sciences, 2021, 46, 101-108.	1.4	6
104	A Fluorescent Compound from the Exuviae of the Scorpion, <i>Liocheles australasiae</i> . Journal of Natural Products, 2020, 83, 542-546.	3.0	6
105	Structural Effects ofN-Arylcarbamoylpyrazolines on Calcium Uptake in Rat Brain Synaptosomes. Pest Management Science, 1996, 46, 221-225.	0.4	5
106	Rapid purification and molecular modeling of AaIT peptides from venom ofAndroctonus australis. , 1998, 38, 53-65.		5
107	Isolation and Characterization of a Novel Non-Selective β-Toxin from the Venom of the Scorpion <i>Isometrus maculatus</i> . Bioscience, Biotechnology and Biochemistry, 2012, 76, 2089-2092.	1.3	5
108	Substrate recognition by P-glycoprotein efflux transporters: Structure-ATPase activity relationship of diverse chemicals and agrochemicals. Journal of Pesticide Sciences, 2013, 38, 112-122.	1.4	5

#	Article	IF	CITATIONS
109	Characterization of the venom of the vermivorous cone snail <i>Conus fulgetrum</i> . Bioscience, Biotechnology and Biochemistry, 2016, 80, 1879-1882.	1.3	5
110	Isolation, structural identification and biological characterization of two conopeptides from the <i>Conus pennaceus</i> venom. Bioscience, Biotechnology and Biochemistry, 2017, 81, 2086-2089.	1.3	5
111	SAR and QSAR Studies For In Vivo and In Vitro Activities of Ecdysone Agonists. , 2009, , 475-509.		5
112	Quantitative Structure-Activity Relationships of Molting Inhibitors. Journal of Pesticide Sciences, 1996, 21, 363-377.	1.4	5
113	cDNA cloning of <i>ecdysone receptor</i> (<i>EcR</i>) and <i>ultraspiracle</i> (<i>USP</i>) from <i>Harmonia axyridis</i> and <i>Epilachna vigintioctopunctata</i> and the evaluation of the binding affinity of ecdysone agonists to the <i>in vitro</i> translated EcR/USP heterodimers. Journal of Pesticide Sciences. 2014. 39. 76-84.	1.4	5
114	Advanced Screening to Identify Novel Pesticides. , 2013, , 135-163.		4
115	Chemical synthesis of La1 isolated from the venom of the scorpion <scp><i>Liocheles australasiae</i></scp> and determination of its disulfide bonding pattern. Journal of Peptide Science, 2015, 21, 636-643.	1.4	4
116	Quantitative structure–activity relationship of substituted imidazothiadiazoles for their binding against the ecdysone receptor of Sf-9 cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5305-5309.	2.2	4
117	Characterization of 2 linear peptides without disulfide bridges from the venom of the spider <i>Lycosa poonaensis</i> (Lycosidae). Bioscience, Biotechnology and Biochemistry, 2021, 85, 1348-1356.	1.3	4
118	A Commercial Extract of Cyanotis arachnoidea Roots as a Source of Unusual Ecdysteroid Derivatives with Insect Hormone Receptor Binding Activity. Journal of Natural Products, 2021, 84, 1870-1881.	3.0	4
119	Detection of juvenile hormone agonists by a new reporter gene assay using yeast expressing <i>Drosophila</i> methopreneâ€tolerant. FEBS Open Bio, 2021, 11, 2774-2783.	2.3	4
120	Effects of brassinolide on the growing of rice plants. Journal of Pesticide Sciences, 2021, 46, 274-277.	1.4	4
121	Quantitative structure-activity relationships and designed synthesis of larvicidalN,Nâ€2-dibenzoyl-N-tert-butylhydrazines againstChilo suppressalis. Pest Management Science, 1995, 44, 102-105.	0.4	3
122	Prediction of the binding mode of imidacloprid and related compounds to houseâ€fly head acetylcholine receptors using threeâ€dimensional QSAR analysis. Pest Management Science, 1998, 54, 134-144.	0.4	3
123	Mode of Action of Benzoylphenylureas. Journal of Pesticide Sciences, 1996, 21, 460-467.	1.4	3
124	Effects of Synergists on the Insecticidal Activity of Chloronicotinyl-related Benzyl Compounds against Houseflies. Journal of Pesticide Sciences, 2001, 26, 91-92.	1.4	3
125	Structure-activity relationship and mode of action study of insect growth regulators. Journal of Pesticide Sciences, 2007, 32, 135-136.	1.4	3
126	Molecular mechanism of the molting and the structure–activity relationship for molting inhibitor. Journal of Pesticide Sciences, 2011, 36, 300-303.	1.4	2

#	Article	IF	CITATIONS
127	Crystallization and preliminary X-ray diffraction studies of La1 from <i>Liocheles australasiae</i> . Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 915-917.	0.8	2
128	20-Hydroxyecdysone. , 2016, , 560-e98A-2.		2
129	Isoxaben analogs inhibit chitin synthesis in the cultured integument of the rice stem borer <i>Chilo suppressalis</i> . Journal of Pesticide Sciences, 2021, 46, 120-123.	1.4	2
130	Criterion of molecular size to evaluate the bioaccumulation potential of chemicals in fish. Journal of Pesticide Sciences, 2022, 47, 8-16.	1.4	2
131	Binding Affinity of the Methyl Ester of AK-toxin I to Membrane Fractions from Japanese Pear Leaves. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2517-2521.	1.3	1
132	Ecdysteroids. , 2016, , 557-e98-14.		1
133	Toshio Fujita, 1929–2017. Journal of Pesticide Sciences, 2017, 42, 177-178.	1.4	1
134	QSAR of the molting hormone like compounds. Japanese Journal of Pesticide Science, 2017, 42, 38-43.	0.0	1
135	Permeability of the fish intestinal membrane to bulky chemicals. Journal of Pesticide Sciences, 2022, 47, 86-92.	1.4	1
136	Structureactivity relationship and mode of action study of insect growth regulators. Journal of Pesticide Sciences, 2007, 32, 143-150.	1.4	0
137	Practice of QSAR in pesticide research. Japanese Journal of Pesticide Science, 2014, 39, 18-31.	0.0	Ο
138	Identification and in silico prediction of metabolites of tebufenozide derivatives by major human cytochrome P450 isoforms. Bioorganic and Medicinal Chemistry, 2020, 28, 115429.	3.0	0
139	<i>De Novo</i> Sequencing Analysis of a Linear Peptide in the Venom of the Scorpion <i>Buthacus leptochelys</i> . Journal of the Mass Spectrometry Society of Japan, 2021, 69, 41-45.	0.1	Ο
140	å^†åœ~†è™«å¦â"€ãfã,¹ãf^ã,²ãfŽãfã®æ~†è™«ç"究─ï¼ç¥žæ' å¦ãf»æ—¥æœ¬å,ç§€ãf»è'›è¥¿çœŸæ²»ã	f» ç.₄ ¹å†	.ç§€æ~Žãf»ç•
141	The 12th IUPAC International Congress of Pesticide Chemistry. Journal of Pesticide Sciences, 2011, 36, 195-197.	1.4	Ο
142	The 12th IUPAC International Congress of Pesticide Chemistry. Journal of Pesticide Sciences, 2011, 36, 198-199.	1.4	0
143	Structure modification of nonsteroidal brassinolide-like compound, NSBR1. Bioscience, Biotechnology and Biochemistry, 0, , .	1.3	Ο