
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5712042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457, 706-710.	13.7	9,624
2	Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010, 5, 574-578.	15.6	7,294
3	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	23.0	3,531
4	Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598, 444-450.	13.7	2,065
5	Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chemical Reviews, 2016, 116, 5464-5519.	23.0	1,942
6	Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano, 2010, 4, 3979-3986.	7.3	1,835
7	Tuning the Graphene Work Function by Electric Field Effect. Nano Letters, 2009, 9, 3430-3434.	4.5	1,255
8	Molecular Clusters of ï€-Systems:  Theoretical Studies of Structures, Spectra, and Origin of Interaction Energies. Chemical Reviews, 2000, 100, 4145-4186.	23.0	984
9	Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57, 724-803.	16.0	892
10	Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017, 7, 7196-7225.	5.5	857
11	Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 2006, 35, 355.	18.7	766
12	Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotechnology, 2008, 3, 408-412.	15.6	747
13	Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase. Science, 2001, 294, 348-351.	6.0	644
14	Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene. Advanced Materials, 2011, 23, H263-7.	11.1	626
15	Understanding of Assembly Phenomena by Aromaticâ^'Aromatic Interactions:Â Benzene Dimer and the Substituted Systems. Journal of Physical Chemistry A, 2007, 111, 3446-3457.	1.1	617
16	Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chemical Communications, 2011, 47, 3942.	2.2	576
17	Unique Sandwich Stacking of Pyrene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH. Journal of the American Chemical Society, 2009, 131, 15528-15533.	6.6	551
18	Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nature Energy, 2018, 3, 773-782.	19.8	542

#	Article	IF	CITATIONS
19	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	10.2	538
20	Fast DNA sequencing with a graphene-based nanochannel device. Nature Nanotechnology, 2011, 6, 162-165.	15.6	517
21	Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 2013, 5, 3149.	2.8	472
22	Rhodamine-Based Hg2+-Selective Chemodosimeter in Aqueous Solution:Â Fluorescent OFFâ^'ON. Organic Letters, 2007, 9, 907-910.	2.4	435
23	Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano, 2016, 10, 46-80.	7.3	433
24	Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy, 2013, 2, 553-578.	8.2	415
25	Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 2013, 56, 173-182.	5.4	409
26	UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. ACS Nano, 2011, 5, 9799-9806.	7.3	350
27	Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 2009, 460, 498-501.	13.7	338
28	Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale, 2011, 3, 3583.	2.8	337
29	Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical Communications, 2012, 48, 735-737.	2.2	328
30	Surface-Directed Molecular Assembly of Pentacene on Monolayer Graphene for High-Performance Organic Transistors. Journal of the American Chemical Society, 2011, 133, 4447-4454.	6.6	309
31	Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. Journal of Chemical Physics, 2000, 112, 9759-9772.	1.2	291
32	Structures, binding energies, and spectra of isoenergetic water hexamer clusters: Extensive ab initio studies. Journal of Chemical Physics, 1998, 109, 5886-5895.	1.2	290
33	Fluorescent GTP-Sensing in Aqueous Solution of Physiological pH. Journal of the American Chemical Society, 2004, 126, 8892-8893.	6.6	286
34	Geometrical and Electronic Structures of Gold, Silver, and Goldâ^'Silver Binary Clusters:Â Origins of Ductility of Gold and Goldâ^'Silver Alloy Formation. Journal of Physical Chemistry B, 2003, 107, 9994-10005.	1.2	283
35	Revisiting small clusters of water molecules. Chemical Physics Letters, 1986, 131, 451-456.	1.2	282
36	Tripodal Nitro-Imidazolium Receptor for Anion Binding Driven by (Câ^'H)+- - -X-Hydrogen Bonds. Organic Letters, 2002, 4, 2897-2900.	2.4	273

#	Article	IF	CITATIONS
37	Theoretical Investigations of Anionâ~ï̃€ Interactions:  The Role of Anions and the Nature of ï€ Systems. Journal of Physical Chemistry A, 2004, 108, 1250-1258.	1.1	260
38	Grapheneâ€Encapsulated Nanoparticleâ€Based Biosensor for the Selective Detection of Cancer Biomarkers. Advanced Materials, 2011, 23, 2221-2225.	11.1	260
39	On Binding Forces between Aromatic Ring and Quaternary Ammonium Compound. Journal of the American Chemical Society, 1994, 116, 7399-7400.	6.6	256
40	Comprehensive Energy Analysis for Various Types of π-Interaction. Journal of Chemical Theory and Computation, 2009, 5, 515-529.	2.3	253
41	Self-Assembled Arrays of Organic Nanotubes with Infinitely Long One-Dimensional H-Bond Chains. Journal of the American Chemical Society, 2001, 123, 10748-10749.	6.6	248
42	Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. Journal of Physical Chemistry Letters, 2011, 2, 841-845.	2.1	237
43	A Calix[4]imidazolium[2]pyridine as an Anion Receptor. Angewandte Chemie - International Edition, 2005, 44, 2899-2903.	7.2	235
44	Graphene–SnO ₂ composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology, 2012, 23, 355705.	1.3	233
45	Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 2014, 66, 320-326.	5.4	230
46	Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies. Journal of Chemical Physics, 1992, 97, 6649-6662.	1.2	229
47	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	11.1	228
48	Cationâ^'Ï€ Interactions:  A Theoretical Investigation of the Interaction of Metallic and Organic Cations with Alkenes, Arenes, and Heteroarenes. Journal of Physical Chemistry A, 2003, 107, 1228-1238.	1.1	226
49	Comparative ab initio study of the structures, energetics and spectra of X[sup â^']â‹(H[sub 2]O)[sub n=1–4] [X=F, Cl, Br, I] clusters. Journal of Chemical Physics, 2000, 113, 5259.	1.2	225
50	Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on Nâ€Đoped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	10.2	224
51	Selective-Area Fluorination of Graphene with Fluoropolymer and Laser Irradiation. Nano Letters, 2012, 12, 2374-2378.	4.5	222
52	One‣tep Synthesis of CoSâ€Ðoped β o(OH) ₂ @Amorphous MoS ₂₊ <i>_x</i> Hybrid Catalyst Grown on Nickel Foam for Highâ€Performance Electrochemical Overall Water Splitting. Advanced Functional Materials, 2016, 26, 7386-7393.	7.8	217
53	Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis. Energy and Environmental Science, 2020, 13, 3447-3458.	15.6	197
54	Olefinic vs Aromatic Ï€â^'H Interaction: A Theoretical Investigation of the Nature of Interaction of First-row Hydrides with Ethene and Benzene. Journal of the American Chemical Society, 2001, 123, 3323-3331.	6.6	193

#	Article	IF	CITATIONS
55	Substituent Effects on the Edge-to-Face Aromatic Interactions. Journal of the American Chemical Society, 2005, 127, 4530-4537.	6.6	190
56	Transparent Flexible Organic Transistors Based on Monolayer Graphene Electrodes on Plastic. Advanced Materials, 2011, 23, 1752-1756.	11.1	189
57	Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nature Sustainability, 2020, 3, 556-563.	11.5	186
58	Mesoporous Silicon Hollow Nanocubes Derived from Metal–Organic Framework Template for Advanced Lithium-Ion Battery Anode. ACS Nano, 2017, 11, 4808-4815.	7.3	181
59	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	15.6	176
60	New Fluorescent Photoinduced Electron Transfer Chemosensor for the Recognition of H2PO4 Organic Letters, 2003, 5, 2083-2086.	2.4	172
61	Highly Effective Fluorescent Sensor for H2PO4 Journal of Organic Chemistry, 2004, 69, 581-583.	1.7	170
62	Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nature Communications, 2013, 4, 2221.	5.8	169
63	Chromium Porphyrin Arrays As Spintronic Devices. Journal of the American Chemical Society, 2011, 133, 9364-9369.	6.6	167
64	Structures, energetics, and spectra of aquaâ€sodium(I): Thermodynamic effects and nonadditive interactions. Journal of Chemical Physics, 1995, 102, 839-849.	1.2	166
65	Insights into the Structures, Energetics, and Vibrations of Monovalent Cationâ^'(Water)1-6Clustersâ€. Journal of Physical Chemistry A, 2004, 108, 2949-2958.	1.1	158
66	Inductionâ€Driven Stabilization of the Anion–π Interaction in Electronâ€Rich Aromatics as the Key to Fluoride Inclusion in Imidazolium age Receptors. Chemistry - A European Journal, 2011, 17, 1163-1170.	1.7	157
67	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	7.3	157
68	Tuning Molecular Orbitals in Molecular Electronics and Spintronics. Accounts of Chemical Research, 2010, 43, 111-120.	7.6	155
69	Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2000531.	7.8	153
70	Molecular Recognition of Fluoride Anion:  Benzene-Based Tripodal Imidazolium Receptor. Journal of Organic Chemistry, 2003, 68, 2467-2470.	1.7	151
71	Highly Stable CO ₂ /N ₂ and CO ₂ /CH ₄ Selectivity in Hyper-Cross-Linked Heterocyclic Porous Polymers. ACS Applied Materials & Interfaces, 2014, 6, 7325-7333.	4.0	151
72	Structures and energetics of the water heptamer: Comparison with the water hexamer and octamer. Journal of Chemical Physics, 1999, 110, 9128-9134.	1.2	149

#	Article	IF	CITATIONS
73	Complete basis set limit of <i>Ab initio</i> binding energies and geometrical parameters for various typical types of complexes. Journal of Computational Chemistry, 2008, 29, 1208-1221.	1.5	144
74	Ambipolar Memory Devices Based on Reduced Graphene Oxide and Nanoparticles. Advanced Materials, 2010, 22, 2045-2049.	11.1	143
75	What is the global minimum energy structure of the water hexamer? The importance of nonadditive interactions. Journal of Chemical Physics, 1994, 100, 4484-4486.	1.2	138
76	Control of Graphene Fieldâ€Effect Transistors by Interfacial Hydrophobic Selfâ€Assembled Monolayers. Advanced Materials, 2011, 23, 3460-3464.	11.1	138
77	Ionophores and receptors using cation-Â interactions: Collarenes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 12094-12099.	3.3	137
78	Eigen and Zundel Forms of Small Protonated Water Clusters:  Structures and Infrared Spectra. Journal of Physical Chemistry A, 2007, 111, 10692-10702.	1.1	137
79	Molecular architecture using novel types of non-covalent π-interactions involving aromatic neutrals, aromatic cations and π-anions. CrystEngComm, 2013, 15, 1285.	1.3	136
80	Machine learning-based high throughput screening for nitrogen fixation on boron-doped single atom catalysts. Journal of Materials Chemistry A, 2020, 8, 5209-5216.	5.2	136
81	Structures, Magnetic Properties, and Aromaticity of Cyclacenes. Angewandte Chemie - International Edition, 1999, 38, 2256-2258.	7.2	135
82	Structures, spectra, and electronic properties of halide-water pentamers and hexamers, Xâ^'(H2O)5,6 (X=F,Cl,Br,I): Ab initio study. Journal of Chemical Physics, 2002, 116, 5509-5520.	1.2	135
83	Quasi-Continuous Growth of Ultralong Carbon Nanotube Arrays. Journal of the American Chemical Society, 2005, 127, 15336-15337.	6.6	131
84	The Nature of a Wet Electron. Physical Review Letters, 1996, 76, 956-959.	2.9	130
85	Charge transfer to solvent (CTTS) energies of small Xâ^'(H2O)n=1–4 (X=F, Cl, Br, I) clusters: Ab initio study. Journal of Chemical Physics, 2000, 112, 101-105.	1.2	130
86	Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. Journal of Materials Chemistry A, 2021, 9, 14043-14051.	5.2	127
87	A theoretical investigation of the nature of the π-H interaction in ethene–H2O, benzene–H2O, and benzene–(H2O)2. Journal of Chemical Physics, 1999, 111, 5838-5850.	1.2	125
88	Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization. Nature Catalysis, 2018, 1, 794-804.	16.1	124
89	Ruthenium Core–Shell Engineering with Nickel Single Atoms for Selective Oxygen Evolution via Nondestructive Mechanism. Advanced Energy Materials, 2021, 11, 2003448.	10.2	124
90	Structures, energetics, and spectra of fluoride–water clusters Fâ^'(H2O)n, n=1–6: Ab initio study. Journal of Chemical Physics, 1999, 110, 9116-9127.	1.2	122

#	Article	IF	CITATIONS
91	Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. Journal of Hazardous Materials, 2018, 344, 576-584.	6.5	120
92	Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nature Communications, 2019, 10, 5195.	5.8	120
93	Application of quantum chemistry to nanotechnology: electron and spin transport in molecular devices. Chemical Society Reviews, 2009, 38, 2319.	18.7	119
94	Dissociation chemistry of hydrogen halides in water. Journal of Chemical Physics, 2004, 120, 9524-9535.	1.2	117
95	Size Control of Semimetal Bismuth Nanoparticles and the UVâ^'Visible and IR Absorption Spectra. Journal of Physical Chemistry B, 2005, 109, 7067-7072.	1.2	117
96	Highly Efficient Oxygen Reduction Reaction Activity of Graphitic Tube Encapsulating Nitrided Co <i>_x</i> Fe <i>_y</i> Alloy. Advanced Energy Materials, 2018, 8, 1801002.	10.2	117
97	Quantum mechanical probabilistic structure of the benzene-water complex. Chemical Physics Letters, 1997, 265, 497-502.	1.2	113
98	Simultaneous Transfer and Doping of CVD-Grown Graphene by Fluoropolymer for Transparent Conductive Films on Plastic. ACS Nano, 2012, 6, 1284-1290.	7.3	113
99	Structures and spectra of iodide–water clusters I[sup â^](H[sub 2]O)[sub n=1–6]: An ab initio study. Journal of Chemical Physics, 2001, 114, 4461.	1.2	111
100	Magic and Antimagic Protonated Water Clusters: Exotic Structures with Unusual Dynamic Effects. Angewandte Chemie - International Edition, 2006, 45, 3795-3800.	7.2	108
101	Controlling Ferromagnetic Easy Axis in a Layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:mn></mml:msub>Single Crystal. Physical Review Letters, 2013, 110, 247201.</mml:math 	2.9	108
102	Characterization of Weak NHâ^'ï€ Intermolecular Interactions of Ammonia with Various Substituted ï€-Systems. Journal of the American Chemical Society, 2006, 128, 5416-5426.	6.6	107
103	Hydrogenâ€Release Mechanisms in Lithium Amidoboranes. Chemistry - A European Journal, 2009, 15, 5598-5604.	1.7	107
104	Assembling Phenomena of Calix[4]hydroquinone Nanotube Bundles by One-Dimensional Short Hydrogen Bonding and Displaced Ï€â^Ï€ Stacking. Journal of the American Chemical Society, 2002, 124, 14268-14279.	6.6	106
105	Quinoxalineâ ``Imidazolium Receptors for Unique Sensing of Pyrophosphate and Acetate by Charge Transfer. Organic Letters, 2007, 9, 485-488.	2.4	106
106	Interactions of CO ₂ with various functional molecules. Physical Chemistry Chemical Physics, 2015, 17, 10925-10933.	1.3	106
107	Ab initio study of the complexation of benzene with ammonium cations. Chemical Physics Letters, 1995, 232, 67-71.	1.2	104
108	Weakly correlated one-dimensional indium chains on Si(111). Physical Review B, 2001, 64, .	1.1	104

#	Article	IF	CITATIONS
109	First-Principles Modeling of Non-Covalent Interactions in Supramolecular Systems: The Role of Many-Body Effects. Journal of Chemical Theory and Computation, 2012, 8, 4317-4322.	2.3	104
110	Novel Structures for the Excess Electron State of the Water Hexamer and the Interaction Forces Governing the Structures. Physical Review Letters, 1997, 79, 2038-2041.	2.9	103
111	Structures, energetics, and spectra of electron–water clusters, eâ^'–(H2O)2–6 and eâ^'–HOD(D2O)1–5 Journal of Chemical Physics, 2003, 119, 187-194.	5. 1.2	103
112	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	10.8	102
113	Cationâ^'ï€â^'Anion Interaction:  A Theoretical Investigation of the Role of Induction Energies. Journal of Physical Chemistry A, 2007, 111, 7980-7986.	1.1	101
114	Fullerol–Titania Chargeâ€Transferâ€Mediated Photocatalysis Working under Visible Light. Chemistry - A European Journal, 2009, 15, 10843-10850.	1.7	101
115	Gap Opening of Graphene by Dual FeCl ₃ -Acceptor and K-Donor Doping. Journal of Physical Chemistry Letters, 2011, 2, 2577-2581.	2.1	101
116	High-Affinity-Assisted Nanoscale Alloys as Remarkable Bifunctional Catalyst for Alcohol Oxidation and Oxygen Reduction Reactions. ACS Nano, 2017, 11, 7729-7735.	7.3	101
117	Aqua–potassium(I) complexes: Ab initio study. Journal of Chemical Physics, 1999, 111, 3995-4004.	1.2	100
118	Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Optics Letters, 2010, 35, 2007.	1.7	100
119	Catalytic role of enzymes: Short strong H-bond-induced partial proton shuttles and charge redistributions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6373-6378.	3.3	99
120	Machine Learning for Predicting the Band Gaps of ABX ₃ Perovskites from Elemental Properties. Journal of Physical Chemistry C, 2020, 124, 8905-8918.	1.5	99
121	Role of Lewis Acid(AlCl3)â^'Aromatic Ring Interactions in Friedelâ^'Craft's Reaction:Â An ab Initio Study. Journal of Physical Chemistry A, 1998, 102, 2253-2255.	1.1	96
122	Extremely stable graphene electrodes doped with macromolecular acid. Nature Communications, 2018, 9, 2037.	5.8	96
123	Selective Fluorescent Detection of RNA in Living Cells by Using Imidazolium-Based Cyclophane. Journal of the American Chemical Society, 2013, 135, 90-93.	6.6	95
124	Origin of the magic numbers of water clusters with an excess electron. Journal of Chemical Physics, 2005, 122, 044309.	1.2	94
125	Fluorescent imidazolium receptors for the recognition of pyrophosphate. Tetrahedron, 2006, 62, 6065-6072.	1.0	94
126	Anthracene derivatives bearing two urea groups as fluorescent receptors for anions. Tetrahedron, 2005, 61, 4545-4550.	1.0	93

#	Article	IF	CITATIONS
127	Calix[n]imidazolium as a new class of positively charged homo-calix compounds. Nature Communications, 2013, 4, 1797.	5.8	93
128	Is the Molecular Berry Phase an Artifact of the Born-Oppenheimer Approximation?. Physical Review Letters, 2014, 113, 263004.	2.9	93
129	Synthesis and Electrical Characterization of Magnetic Bilayer Graphene Intercalate. Nano Letters, 2011, 11, 860-865.	4.5	92
130	Fluorobenzeneâ< water and difluorobenzeneâ water systems: An ab initio investigation. Journal of Chemical Physics, 1999, 110, 8501-8512.	1.2	91
131	Crystalline-amorphous interface of mesoporous Ni2PÂ@ÂFePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Applied Catalysis B: Environmental, 2022, 306, 121127.	10.8	90
132	Anthracene Derivatives Bearing Thiourea and Glucopyranosyl Groups for the Highly Selective Chiral Recognition of Amino Acids:  Opposite Chiral Selectivities from Similar Binding Units. Journal of Organic Chemistry, 2008, 73, 301-304.	1.7	89
133	Cyameluric Acid as Anion-ï€ Type Receptor for ClO ₄ ^{â^'} and NO ₃ ^{â^'} : ï€-Stacked and Edge-to-Face Structures. Journal of Chemical Theory and Computation, 2008, 4, 1401-1407.	2.3	89
134	Carbon nanotube, graphene, nanowire, and moleculeâ€based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory. Journal of Computational Chemistry, 2008, 29, 1073-1083.	1.5	88
135	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
136	Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction. Scientific Reports, 2015, 5, 14358.	1.6	87
137	Nature of One-Dimensional Short Hydrogen Bonding:  Bond Distances, Bond Energies, and Solvent Effects. Journal of the American Chemical Society, 2004, 126, 2186-2193.	6.6	86
138	Suppressed β-Hydride Elimination in Palladium-Catalyzed Cascade Cyclizationâ^'Coupling Reactions:  An Efficient Synthesis of 3-Arylmethylpyrrolidines. Organic Letters, 2000, 2, 1213-1216.	2.4	85
139	Selective n-Type Doping of Graphene by Photo-patterned Gold Nanoparticles. ACS Nano, 2011, 5, 3639-3644.	7.3	85
140	Ab Initio Study of the Structures, Energetics, and Spectra of Aquazinc(II). The Journal of Physical Chemistry, 1996, 100, 14329-14338.	2.9	84
141	Ab initio studies of the water hexamer: near degenerate structures. Chemical Physics Letters, 1991, 176, 41-45.	1.2	83
142	Water dimer to pentamer with an excess electron: Ab initio study. Journal of Chemical Physics, 1999, 111, 10077-10087.	1.2	83
143	Ab initio study of hydrated sodium halides NaX(H2O)1–6 (X=F, Cl, Br, and I). Journal of Chemical Physics, 2006, 124, 024321.	1.2	82
144	Harmonic vibrational frequencies of the water monomer and dimer: Comparison of various levels of ab initio theory. Journal of Chemical Physics, 1995, 102, 310-317.	1.2	80

#	Article	IF	CITATIONS
145	Molecular Cluster Bowl To Enclose a Single Electron. Journal of the American Chemical Society, 1997, 119, 9329-9330.	6.6	80
146	Structures, energies, and vibrational spectra of water undecamer and dodecamer: An ab initio study. Journal of Chemical Physics, 2001, 114, 10749-10756.	1.2	80
147	Highly Selective and Stable Carbon Dioxide Uptake in Polyindole-Derived Microporous Carbon Materials. Environmental Science & Technology, 2013, 47, 5467-5473.	4.6	80
148	Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease. Nature Communications, 2016, 7, 13115.	5.8	80
149	Control of the π plasmon in a single layer graphene by charge doping. Applied Physics Letters, 2011, 99, .	1.5	79
150	Interconnected Pt-Nanodendrite/DNA/Reduced-Graphene-Oxide Hybrid Showing Remarkable Oxygen Reduction Activity and Stability. ACS Nano, 2013, 7, 9223-9231.	7.3	79
151	Versatile pâ€Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes. Angewandte Chemie - International Edition, 2016, 55, 6197-6201.	7.2	78
152	Accelerated Bone Regeneration by Two-Photon Photoactivated Carbon Nitride Nanosheets. ACS Nano, 2017, 11, 742-751.	7.3	78
153	Entropy-driven structures of the water octamer. Chemical Physics Letters, 1994, 219, 243-246.	1.2	77
154	Van der Waals Epitaxial Double Heterostructure: InAs/Single‣ayer Graphene/InAs. Advanced Materials, 2013, 25, 6847-6853.	11.1	77
155	Prediction of Reorganization Free Energies for Biological Electron Transfer: A Comparative Study of Ru-Modified Cytochromes and a 4-Helix Bundle Protein. Journal of the American Chemical Society, 2010, 132, 17032-17040.	6.6	76
156	Triazine-Based Microporous Polymers for Selective Adsorption of CO ₂ . Journal of Physical Chemistry C, 2015, 119, 5395-5402.	1.5	76
157	Structural, electronic, and magnetic properties of a ferromagnetic semiconductor: Co-dopedTiO2rutile. Physical Review B, 2003, 68, .	1.1	75
158	Reversible CO ₂ adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology, 2013, 24, 235703.	1.3	75
159	Novel Amphi-Ionophores. Journal of Physical Chemistry B, 1998, 102, 461-463.	1.2	74
160	Crystal Structure of Δ5-3-Ketosteroid Isomerase from Pseudomonas testosteroni in Complex with Equilenin Settles the Correct Hydrogen Bonding Scheme for Transition State Stabilization. Journal of Biological Chemistry, 1999, 274, 32863-32868.	1.6	74
161	Nanowires for spintronics: $\hat{a} \in f A$ study of transition-metal elements of groups $\hat{a} \in 10$. Physical Review B, 2004, 69, .	1.1	74
162	Fluorescent Imidazolium-Based Cyclophane for Detection of Guanosine-5′-triphosphate and I [–] in Aqueous Solution of Physiological pH. Organic Letters, 2011, 13, 5476-5479.	2.4	74

#	Article	IF	CITATIONS
163	Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 6679-6689.	5.2	74
164	Benzene-hydrogen halide interactions: Theoretical studies of binding energies, vibrational frequencies, and equilibrium structures. Journal of Chemical Physics, 1998, 108, 7217-7223.	1.2	73
165	Synthesis of Singleâ€Crystal Tetra(4â€pyridyl)porphyrin Rectangular Nanotubes in the Vapor Phase. Angewandte Chemie - International Edition, 2009, 48, 2506-2509.	7.2	73
166	Noncovalent Interactions of DNA Bases with Naphthalene and Graphene. Journal of Chemical Theory and Computation, 2013, 9, 2090-2096.	2.3	73
167	Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 8445-8451.	4.0	73
168	Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for Water Splitting via Distinctive Mechanistic Pathways. Advanced Energy Materials, 2021, 11, 2102388.	10.2	73
169	Intramolecular charge transfer of ï€-conjugated push–pull systems in terms of polarizability and electronegativity. Journal of Chemical Physics, 2001, 115, 9484-9489.	1.2	72
170	2-Dimensional Analytic Approach for Anion Differentiation with Chromofluorogenic Receptors. Journal of Organic Chemistry, 2007, 72, 5461-5464.	1.7	72
171	Origin of the High Affinity and Selectivity of Novel Receptors for NH4+over K+:  Charged Hydrogen Bonds vs Cationâ^ï€ Interaction. Organic Letters, 2000, 2, 2679-2681.	2.4	71
172	Anisole-(H2O)n (n=1–3) complexes: An experimental and theoretical investigation of the modulation of optimal structures, binding energies, and vibrational spectra in both the ground and first excited states. Journal of Chemical Physics, 2002, 117, 8805-8822.	1.2	70
173	Structures, energetics, and spectra of hydrated hydroxide anion clusters. Journal of Chemical Physics, 2004, 121, 4657-4664.	1.2	70
174	Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Applied Physics Letters, 2006, 88, 143106.	1.5	70
175	How Different Are Aromatic π Interactions from Aliphatic π Interactions and Non-π Stacking Interactions?. Journal of Chemical Theory and Computation, 2011, 7, 3471-3477.	2.3	70
176	Modulation of Cu and Rh single-atoms and nanoparticles for high-performance hydrogen evolution activity in acidic media. Journal of Materials Chemistry A, 2021, 9, 10326-10334.	5.2	70
177	Vibrational spectra and electron detachment energy of the anionic water hexamer. Journal of Chemical Physics, 2000, 113, 5273.	1.2	69
178	Structures and electronic properties of small carbon nanotube tori. Physical Review B, 2000, 62, 1600-1603.	1.1	69
179	Effect of dimensionality on the electronic structure of Cu, Ag, and Au. Physical Review B, 2003, 68, .	1.1	69
180	Single crystal structure of copper hexadecafluorophthalocyanine (F ₁₆ CuPc) ribbon. Chemical Communications, 2010, 46, 231-233.	2.2	69

#	Article	IF	CITATIONS
181	N-Protonation vs O-Protonation in Strained Amides:ÂAb InitioStudy. Journal of Organic Chemistry, 1997, 62, 4068-4071.	1.7	68
182	Ring Opening Dynamics of a Photochromic Diarylethene Derivative in Solutionâ€. Journal of Physical Chemistry A, 2003, 107, 8106-8110.	1.1	68
183	Electric field effects on water clusters (n=3–5): Systematic ab initio study of structures, energetics, and transition states. Journal of Chemical Physics, 2006, 124, 094308.	1.2	68
184	Designing lonophores and Molecular Nanotubes Based on Molecular Recognition. Supramolecular Chemistry, 2007, 19, 321-332.	1.5	68
185	Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes. Physical Chemical Physics, 2010, 12, 5446. Chemistry Chemical Physics, 2010, 12, 5446. Chemistry Chemical Physics and Mechanism of High <mml:math< td=""><td>1.3</td><td>67</td></mml:math<>	1.3	67
186	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub> Superconc in Correlated <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>luctivity</td><td></td></mml:math>	luctivity	

#	Article	IF	CITATIONS
199	Water Dimer Cation: Density Functional Theory vs Ab Initio Theory. Journal of Chemical Theory and Computation, 2009, 5, 976-981.	2.3	64
200	Hydrogen bonding between the water molecule and the hydroxyl radical (H2Oâ‹OH): The 2Aâ€~ and 2A' minima. Journal of Chemical Physics, 1991, 94, 2057-2062.	1.2	63
201	Solvent-Driven Structural Changes in Anionâ^ï̃€ Complexes. Journal of Chemical Theory and Computation, 2008, 4, 1162-1169.	2.3	62
202	High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon. Applied Physics Letters, 2011, 99, .	1.5	62
203	Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption. Nanotechnology, 2013, 24, 255702.	1.3	62
204	Simultaneous Visualization of Graphene Grain Boundaries and Wrinkles with Structural Information by Gold Deposition. ACS Nano, 2014, 8, 8662-8668.	7.3	62
205	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	10.2	62
206	Negative differential resistance of carbon nanotube electrodes with asymmetric coupling phenomena. Physical Review B, 2007, 76, .	1.1	61
207	Clean Transfer of Wafer-Scale Graphene <i>via</i> Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons. ACS Nano, 2015, 9, 4726-4733.	7.3	61
208	Interaction of K+ ion with the solvated gramicidin A transmembrane channel. Biophysical Journal, 1985, 47, 327-335.	0.2	60
209	Structure, vertical electron-detachment energy, and O–H stretching frequencies of e+(H2O)12. Journal of Chemical Physics, 1997, 106, 10207-10214.	1.2	60
210	New imidazolium systems bearing two pyrene groups as fluorescent chemosensors for anions and anion induced logic gates. Tetrahedron Letters, 2007, 48, 169-172.	0.7	60
211	Fluorobenzene and p-difluorobenzene microsolvated by methanol: An infrared spectroscopic and ab initio theoretical investigation. Journal of Chemical Physics, 2000, 112, 1844-1858.	1.2	59
212	Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18, 4510.	6.7	59
213	How Different are Electron-Rich and Electron-Deficient π Interactions?. Journal of Chemical Theory and Computation, 2010, 6, 1931-1934.	2.3	59
214	Ab Initio Study of Benzeneâ^'BX3(X = H, F, Cl) Interactions. Journal of Physical Chemistry B, 1999, 103, 184-191.	1.2	58
215	Interaction of the water dimer with ï€-systems: A theoretical investigation of structures, energies, and vibrational frequencies. Journal of Chemical Physics, 2000, 112, 1769-1781.	1.2	58
216	Stochastic evaluation of second-order many-body perturbation energies. Journal of Chemical Physics, 2012, 137, 204122.	1.2	58

#	Article	IF	CITATIONS
217	Efficient separation of C ₂ hydrocarbons in a permanently porous hydrogen-bonded organic framework. Chemical Communications, 2018, 54, 9360-9363.	2.2	58
218	Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer. Chemical Engineering Journal, 2022, 430, 132623.	6.6	58
219	Ab initio study of the low-lying electronic states of Ag3â^', Ag3, and Ag3+: A coupled-cluster approach. Journal of Chemical Physics, 2000, 112, 9335-9342.	1.2	57
220	Structures, energies, and spectra of aqua-silver (I) complexes. Journal of Chemical Physics, 2003, 119, 7725-7736.	1.2	57
221	Aromatic Excimers: <i>Ab Initio</i> and TD-DFT Study. Journal of Chemical Theory and Computation, 2013, 9, 847-856.	2.3	57
222	Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium–cobalt phosphide nanoparticles. Nano Energy, 2020, 78, 105166.	8.2	57
223	Water-cluster distribution with respect to pressure and temperature in the gas phase. Physical Review A, 1993, 48, 3764-3770.	1.0	56
224	An Electrochemically Controllable Nanomechanical Molecular System Utilizing Edge-to-Face and Face-to-Face Aromatic Interactions. Organic Letters, 2002, 4, 3971-3974.	2.4	56
225	Structures, energetics, and spectra of aqua-cesium (I) complexes: An ab initio and experimental study. Journal of Chemical Physics, 2007, 126, 074302.	1.2	55
226	Intriguing Ï€ ⁺ â^Ï€ Interaction in Crystal Packing. Journal of Physical Chemistry B, 2010, 114, 4166-4170.	1.2	55
227	Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications. ACS Applied Materials & Interfaces, 2017, 9, 24393-24406.	4.0	55
228	Role of molecular orbitals of the benzene in electronic nanodevices. Journal of Chemical Physics, 2005, 122, 094706.	1.2	54
229	Substrate-Induced Solvent Intercalation for Stable Graphene Doping. ACS Nano, 2013, 7, 1155-1162.	7.3	54
230	Density Functional Theory Based Study of Molecular Interactions, Recognition, Engineering, and Quantum Transport in π Molecular Systems. Accounts of Chemical Research, 2014, 47, 3321-3330.	7.6	54
231	Quantum-mechanical probabilistic structure of the water dimer with an excess electron. Physical Review A, 1999, 59, R930-R933.	1.0	52
232	Structure and stability of fluorine-substituted benzene-argon complexes: The decisive role of exchange-repulsion and dispersion interactions. Journal of Chemical Physics, 2001, 115, 6018-6029.	1.2	52
233	Catalytic Mechanism of Enzymes:Â Preorganization, Short Strong Hydrogen Bond, and Charge Bufferingâ€. Biochemistry, 2002, 41, 5300-5306.	1.2	52
234	Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms. Journal of Chemical Physics, 2006, 125, 234305.	1.2	52

#	Article	IF	CITATIONS
235	Zn(H2O)2+6 is very stable among aqua-Zn(II) ions. Chemical Physics Letters, 1992, 197, 77-80.	1.2	51
236	Solvent rearrangement for an excited electron of Iâ^'(H2O)6: Analog to structural rearrangement of eâ^'(H2O)6. Journal of Chemical Physics, 2003, 119, 7685-7692.	1.2	51
237	Spin-induced band modifications of graphene through intercalation of magnetic iron atoms. Nanoscale, 2014, 6, 3824-3829.	2.8	51
238	Vibrational frequencies of the cyanocarbene (HCCN) molecule. A near degeneracy between bent cyanocarbene and linear allene-related geometries. Journal of the American Chemical Society, 1983, 105, 4148-4154.	6.6	50
239	Ab Initio Study of s-trans-1,3-Butadiene Using Various Levels of Basis Set and Electron Correlation: Force Constants and Exponentially Scaled Vibrational Frequencies. The Journal of Physical Chemistry, 1995, 99, 1913-1918.	2.9	50
240	Structure, electronic properties, and vibrational spectra of the water octamer with an extra electron: Ab initio study. Journal of Chemical Physics, 2002, 117, 706-708.	1.2	50
241	First-principles study of the adsorption ofC2H2andC2H4on Si(100). Physical Review B, 2001, 63, .	1.1	49
242	Study of interactions of various ionic species with solvents toward the design of receptors. Theoretical Chemistry Accounts, 2006, 115, 127-135.	0.5	49
243	Photoexcitation and Photoionization Dynamics of Water Photolysis. Journal of Physical Chemistry A, 2008, 112, 5502-5508.	1.1	49
244	Labelâ€Free Polypeptideâ€Based Enzyme Detection Using a Grapheneâ€Nanoparticle Hybrid Sensor. Advanced Materials, 2012, 24, 6081-6087.	11,1	49
245	Precise Tuning of Cationic Cyclophanes toward Highly Selective Fluorogenic Recognition of Specific Biophosphate Anions. Organic Letters, 2014, 16, 2150-2153.	2.4	49
246	Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology, 2015, 26, 385602.	1.3	49
247	Fulgides as Light-Driven Molecular Rotary Motors: Computational Design of a Prototype Compound. Journal of Physical Chemistry Letters, 2018, 9, 4995-5001.	2.1	48
248	Energetics and hydration structures of a solvated gramicidin A transmembrane channel for potassium and sodium cations. Journal of the American Chemical Society, 1985, 107, 5504-5513.	6.6	47
249	Starands vs Ketonands:  Ab Initio Study. Journal of the American Chemical Society, 1996, 118, 485-486.	6.6	47
250	Magic Structures and Quantum Conductance of[110]Silver Nanowires. Physical Review Letters, 2006, 96, 096104.	2.9	47
251	Ring Closure Reaction Dynamics of Diarylethene Derivatives in Solution. Journal of Physical Chemistry A, 2007, 111, 8910-8917.	1.1	47
252	Effect of Electrodes on Electronic Transport of Molecular Electronic Devices. Journal of Physical Chemistry A, 2009, 113, 4100-4104.	1.1	47

#	Article	IF	CITATIONS
253	CO ₂ Capturing Mechanism in Aqueous Ammonia: NH ₃ -Driven Decompositionâ^'Recombination Pathway. Journal of Physical Chemistry Letters, 2011, 2, 689-694.	2.1	47
254	Graphene–nanowire hybrid structures for high-performance photoconductive devices. Journal of Materials Chemistry, 2012, 22, 8372.	6.7	47
255	Why Is MP2-Water "Cooler―and "Denser―than DFT-Water?. Journal of Physical Chemistry Letters, 2016 7, 680-684.	' 2.1	47
256	A New Perspective on the Role of Aâ€Site Cations in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702898.	10.2	47
257	Antimony Nanowires Self-Assembled from Sb Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 16723-16726.	1.2	46
258	Sodium(1+) and potassium(1+) ion transport through a solvated gramicidin A transmembrane channel: molecular dynamics studies using parallel processors. The Journal of Physical Chemistry, 1985, 89, 2870-2876.	2.9	45
259	Structural Stabilities and Self-Assembly of Cucurbit[n]uril (n = 4â^'7) and Decamethylcucurbit[n]uril (n = 4â^'6):  A Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 9726-9731.	1.2	45
260	Water heptamer with an excess electron: Ab initio study. Journal of Chemical Physics, 2003, 118, 9981-9986.	1.2	45
261	Spatial Structure of Au8:Â Importance of Basis Set Completeness and Geometry Relaxation. Journal of Physical Chemistry B, 2006, 110, 21639-21642.	1.2	45
262	Universal Machine Learning Interatomic Potentials: Surveying Solid Electrolytes. Journal of Physical Chemistry Letters, 2021, 12, 8115-8120.	2.1	45
263	Influence of intermolecular hydrogen bonding on water dissociation at the MgO(001) surface. Physical Review B, 2000, 62, 9981-9984.	1.1	44
264	Interplay of local structure and magnetism in Co-doped TiO2 anatase. Solid State Communications, 2004, 129, 741-746.	0.9	44
265	The origin of dips for the graphene-based DNA sequencing device. Physical Chemistry Chemical Physics, 2011, 13, 14293.	1.3	44
266	Turn-on and Turn-off Fluorescent Probes for Carbon Monoxide Detection and Blood Carboxyhemoglobin Determination. ACS Sensors, 2018, 3, 1102-1108.	4.0	44
267	Ab initio study of water hexamer anions. Chemical Physics Letters, 1996, 254, 128-134.	1.2	43
268	Nature of the interaction of paramagnetic atoms (A=4N,4P,3O,3S) with π systems and C60: A theoretical investigation of Aâ‹â‹â‹C6H6 and endohedral fullerenes A@C60. Journal of Chemical Physics, 2002, 116, 10684-10691.	1.2	43
269	Phenol vs Water Molecule Interacting with Various Molecules:  σ-type, π-type, and χ-type Hydrogen Bonds, Interaction Energies, and Their Energy Components. Journal of Physical Chemistry A, 2005, 109, 1720-1728.	1.1	43
270	Controllable nâ€Type Doping on CVDâ€Grown Single―and Double‣ayer Graphene Mixture. Advanced Materials, 2015, 27, 1619-1623.	11.1	43

#	Article	IF	CITATIONS
271	Vibrational Spectra of all-trans-1,3,5,7-Octatetraene. The Journal of Physical Chemistry, 1995, 99, 2262-2266.	2.9	42
272	Molecular design and synthesis of ruthenium(ii) sensitizers for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 12389.	6.7	42
273	Graphene Spin-Valve Device Grown Epitaxially on the Ni(111) Substrate: A First Principles Study. Journal of Physical Chemistry C, 2011, 115, 6019-6023.	1.5	42
274	Efficient electron extraction of SnO2 electron transport layer for lead halide perovskite solar cell. Npj Computational Materials, 2020, 6, .	3.5	42
275	Alâ€Doping Driven Suppression of Capacity and Voltage Fadings in 4dâ€Element Containing Liâ€Ionâ€Battery Cathode Materials: Machine Learning and Density Functional Theory. Advanced Energy Materials, 2022, 12, .	10.2	42
276	Cation Affinities of [16]Starand Model. Comparison with 12-Crown-4:Â Crucial Role of Dipolar Moiety Orientations. Journal of Physical Chemistry A, 1998, 102, 1119-1123.	1.1	41
277	A Theoretical Investigation of Benzeneâ^'AlX3and Etheneâ^'AlX3(X = H, F, Cl) Interactions. Journal of Physical Chemistry A, 1999, 103, 9116-9124.	1.1	41
278	Hydrated copper and gold monovalent cations:Ab initiostudy. Journal of Chemical Physics, 2005, 122, 064314.	1.2	41
279	Intercalation of Transition Metals into Stacked Benzene Rings: A Model Study of the Intercalation of Transition Metals into Bilayered Graphene. Journal of Chemical Theory and Computation, 2012, 8, 99-105.	2.3	41
280	Dynamics and structural changes of small water clusters on ionization. Journal of Computational Chemistry, 2013, 34, 1589-1597.	1.5	41
281	Multi-site catalyst derived from Cr atoms-substituted CoFe nanoparticles for high-performance oxygen evolution activity. Chemical Engineering Journal, 2021, 404, 126513.	6.6	41
282	Sparse Gaussian process potentials: Application to lithium diffusivity in superionic conducting solid electrolytes. Physical Review B, 2021, 103, .	1.1	41
283	Hydration Phenomena of Sodium and Potassium Hydroxides by Water Molecules. Journal of Physical Chemistry A, 2006, 110, 12484-12493.	1.1	40
284	Tailoring Electronic and Magnetic Properties of MoS ₂ Nanotubes. Journal of Physical Chemistry C, 2015, 119, 6405-6413.	1.5	40
285	Origin of diastereoselectivity in the nitrile oxide cycloadditions with Oppolzer's chiral sultams: coulombic interaction as the key role in diastereofacial differentiation. Journal of the American Chemical Society, 1993, 115, 7472-7477.	6.6	39
286	Ab initiostudy of hydrated potassium halides KX(H2O)1–6 (X=F,Cl,Br,I). Journal of Chemical Physics, 2007, 126, 144311.	1.2	39
287	Differences in structure, energy, and spectrum between neutral, protonated, and deprotonated phenol dimers: comparison of various density functionals with ab initio theory. Physical Chemistry Chemical Physics, 2011, 13, 991-1001.	1.3	39
288	Selective detection of guanosine-5′-triphosphate and iodide by fluorescent benzimidazolium-based cyclophanes. Organic and Biomolecular Chemistry, 2013, 11, 6407.	1.5	39

#	Article	IF	CITATIONS
289	Lower Electric Field-Driven Magnetic Phase Transition and Perfect Spin Filtering in Graphene Nanoribbons by Edge Functionalization. Journal of Physical Chemistry Letters, 2016, 7, 5049-5055.	2.1	39
290	Ab initiostudy of superoxide anion—water clusters O2â^'(H2O)n=1-5. Molecular Physics, 2002, 100, 875-879.	0.8	38
291	Rational Design of Biologically Important Chemosensors:  A Novel Receptor for Selective Recognition of Acetylcholine over Ammonium Cations. Organic Letters, 2003, 5, 471-474.	2.4	38
292	Hydration and Dissociation of Hydrogen Fluoric Acid (HF). Journal of Physical Chemistry A, 2006, 110, 7918-7924.	1.1	38
293	De novo design approach based on nanorecognition toward development of functional molecules/materials and nanosensors/nanodevices. Pure and Applied Chemistry, 2007, 79, 1057-1075.	0.9	38
294	Towards Molecular Magnetic Switching with an Electric Bias. Angewandte Chemie - International Edition, 2007, 46, 7640-7643.	7.2	38
295	Extended Drude model analysis of noble metals. Physica Status Solidi (B): Basic Research, 2007, 244, 1354-1362.	0.7	38
296	Ab initio studies of the conformations of methylamine and ethylenediamine: interaction forces affecting the structural stability. The Journal of Physical Chemistry, 1994, 98, 1129-1134.	2.9	37
297	Role of Catalytic Residues in Enzymatic Mechanisms of Homologous Ketosteroid Isomerasesâ€,‡. Biochemistry, 2000, 39, 13891-13896.	1.2	37
298	La-doped BaSnO ₃ electron transport layer for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 23071-23077.	5.2	37
299	A thermally stable, barium-stabilized α-CsPbI ₃ perovskite for optoelectronic devices. Journal of Materials Chemistry A, 2019, 7, 21740-21746.	5.2	37
300	Ïf to Ï€ conformational transition: Interactions of the water trimer with Ï€ systems. Journal of Chemical Physics, 2001, 114, 1295-1305.	1.2	36
301	Atomic structure and energetics of adsorbed water on the NaCl(001) surface. Physical Review B, 2004, 69, .	1.1	36
302	Can Electron-Rich π Systems Bind Anions?. Journal of Chemical Theory and Computation, 2011, 7, 825-829.	2.3	36
303	<i>cyclo</i> â€Bis(ureaâ€3,6â€dichlorocarbazole) as a Chromogenic and Fluorogenic Receptor for Anions and a Selective Sensor of Zinc and Copper Cations. Chemistry - A European Journal, 2011, 17, 8542-8548.	1.7	36
304	In Search of a Two-Dimensional Material for DNA Sequencing. Journal of Physical Chemistry C, 2014, 118, 10855-10858.	1.5	36
305	Proximity Effect Induced Electronic Properties of Graphene on Bi ₂ Te ₂ Se. ACS Nano, 2015, 9, 10861-10866.	7.3	36
306	Rashba–Dresselhaus Effect in Inorganic/Organic Lead Iodide Perovskite Interfaces. ACS Energy Letters, 2018, 3, 1294-1300.	8.8	36

#	Article	IF	CITATIONS
307	Near degenerate rearrangement between the radical cations of formaldehyde and hydroxymethylene. Journal of Chemical Physics, 1981, 74, 617-621.	1.2	35
308	Theoretical Study of the Conformations and Strain Energies of [n,n]Metaparacyclophanes:Â Indication of Stable Edge-to-Face and Displaced Face-to-Face Conformers forn= 4. Journal of Organic Chemistry, 1999, 64, 5661-5665.	1.7	35
309	Do N-heterocyclic aromatic rings prefer ï€-stacking?. Physical Chemistry Chemical Physics, 2011, 13, 5514.	1.3	35
310	Direct emission from quartet excited states triggered by upconversion phenomena in solid-phase synthesized fluorescent lead-free organic–inorganic hybrid compounds. Journal of Materials Chemistry A, 2019, 7, 26504-26512.	5.2	35
311	Potential new high energy density materials: Cyclooctaoxygen O8, including comparisons with the wellâ€known cycloâ€ S 8molecule. Journal of Chemical Physics, 1990, 92, 1887-1892.	1.2	34
312	van der Waals isomers and ionic reactivity of the cluster system para-chlorofluorobenzene/methanol. Journal of Chemical Physics, 2000, 112, 1170-1177.	1.2	34
313	Ab initio studies of π-water tetramer complexes: Evolution of optimal structures, binding energies, and vibrational spectra of π-(H2O)n (n=1–4) complexes. Journal of Chemical Physics, 2001, 114, 4016-4024.	1.2	34
314	Novel Amphi-ionophore in Aqueous Solution:Â Cyclohexaalanyl. Journal of Physical Chemistry B, 2002, 106, 2061-2064.	1.2	34
315	Linear monatomic wires stabilized by alloying:Ab initiodensity functional calculations. Physical Review B, 2003, 67, .	1.1	34
316	Structures, vibrational frequencies, and infrared spectra of the hexa-hydrated benzene clusters. Journal of Chemical Physics, 2000, 113, 6160-6168.	1.2	33
317	Charge-Transfer-to-Solvent-Driven Dissolution Dynamics of I ⁻ (H ₂ 0) ₂₋₅ upon Excitation:  Excited-State ab Initio Molecular Dynamics Simulations. Journal of the American Chemical Society, 2008, 130, 103-112.	6.6	33
318	Quencher-free molecular beacon: Enhancement of the signal-to-background ratio with graphene oxide. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 704-706.	1.0	33
319	Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study. Nanoscale, 2013, 5, 8210.	2.8	33
320	Persistent Topological Surface State at the Interface of Bi ₂ Se ₃ Film Grown on Patterned Graphene. ACS Nano, 2014, 8, 1154-1160.	7.3	33
321	Choosing a density functional for modeling adsorptive hydrogen storage: reference quantum mechanical calculations and a comparison of dispersion-corrected density functionals. Physical Chemistry Chemical Physics, 2015, 17, 6423-6432.	1.3	33
322	Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach. Journal of Physical Chemistry Letters, 2016, 7, 2478-2482.	2.1	33
323	Tunable Photoluminescence across the Visible Spectrum and Photocatalytic Activity of Mixed-Valence Rhenium Oxide Nanoparticles. Journal of the American Chemical Society, 2017, 139, 15088-15093.	6.6	33
324	An ultra-sensitive, flexible and transparent gas detection film based on well-ordered flat polypyrrole on single-layered graphene. Journal of Materials Chemistry A, 2018, 6, 2257-2263.	5.2	33

#	Article	IF	CITATIONS
325	Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance. Journal of Power Sources, 2018, 374, 217-224.	4.0	33
326	Non-adiabatic dynamics of ring opening in cyclohexa-1,3-diene described by an ensemble density-functional theory method. Molecular Physics, 2019, 117, 1128-1141.	0.8	33
327	Raman intensities of C=C stretching vibrational frequencies of polyenes: Nodal mode analysis. Journal of Chemical Physics, 1997, 107, 4112-4117.	1.2	32
328	Solvent molecules trapped in supramolecular organic nanotubes: a combined solid-state NMR and DFT study. Chemical Physics Letters, 2004, 388, 164-169.	1.2	32
329	Ab Initio Molecular Dynamics Simulations of an Excited State of X-(H2O)3(X = Cl, I) Complex. Journal of Physical Chemistry A, 2005, 109, 9419-9423.	1.1	32
330	Neutral and Anionic Gold Decamers: Planar Structure with Unusual Spatial Charge-Spin Separation. Journal of Chemical Theory and Computation, 2009, 5, 1216-1223.	2.3	32
331	Convergence Acceleration of Parallel Monte Carlo Second-Order Many-Body Perturbation Calculations Using Redundant Walkers. Journal of Chemical Theory and Computation, 2013, 9, 4396-4402.	2.3	32
332	Hydrogenation-induced atomic stripes on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>Hmathvariant="normal">MoS</mml:mi><mml:mn>2</mml:mn>surface. Physical Review B, 2015, 92, .</mml:mrow></mml:math 	וי> ַ /mml:ו 1,1	mrow> <mml:r< td=""></mml:r<>
333	Halogenâ^ï∈ Interactions between Benzene and X2/CX4 (X = Cl, Br): Assessment of Various Density Functionals with Respect to CCSD(T). Journal of Physical Chemistry A, 2016, 120, 9305-9314.	1.1	32
334	Polyenes vs polyynes: Efficient π-frame for nonlinear optical pathways. Journal of Chemical Physics, 2000, 112, 344-348.	1.2	31
335	Comparison of the nature of ï€ and conventional H-bonds: a theoretical investigation. Journal of Molecular Structure, 2002, 615, 227-238.	1.8	31
336	Insights into the structures, energetics, and vibrations of aqua-rubidium(I) complexes: Ab Initio study. Journal of Chemical Physics, 2004, 121, 3108-3116.	1.2	31
337	Drift-induced modifications to the dynamical polarization of graphene. Physical Review B, 2015, 92, .	1.1	31
338	Graphene Edges and Beyond: Temperature-Driven Structures and Electromagnetic Properties. ACS Nano, 2015, 9, 4669-4674.	7.3	31
339	Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S–C Catalyst toward Excellent Oxygen Reduction. ACS Applied Materials & Interfaces, 2016, 8, 16045-16052.	4.0	31
340	Efficient CO Oxidation by 50-Facet Cu ₂ O Nanocrystals Coated with CuO Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 2495-2499.	4.0	31
341	Pt-like hydrogen evolution on a V ₂ O ₅ /Ni(OH) ₂ electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 15794-15800.	5.2	31
342	Na/Al Codoped Layered Cathode with Defects as Bifunctional Electrocatalyst for Highâ€Performance Liâ€ion Battery and Oxygen Evolution Reaction. Small, 2021, 17, e2005605.	5.2	31

#	Article	IF	CITATIONS
343	Aromatic-Aromatic Ring Interaction Revisited with Model Compounds of Wilcox. Journal of Biomolecular Structure and Dynamics, 1997, 15, 401-405.	2.0	30
344	Ab initio study of the isomerization of retinal chromophore and its derivatives. Journal of Chemical Physics, 2002, 116, 6549-6559.	1.2	30
345	Structure and binding energies of unsaturated hydrocarbons on Si(001) and Ge(001). Journal of Chemical Physics, 2006, 124, 024716.	1.2	30
346	Large-scale polyol synthesis of single-crystal bismuth nanowires and the role of NaOH in the synthesis process. Nanotechnology, 2008, 19, 265303.	1.3	30
347	Stochastic evaluation of second-order Dyson self-energies. Journal of Chemical Physics, 2013, 138, 164111.	1.2	30
348	Direct Nonadiabatic Dynamics by Mixed Quantum-Classical Formalism Connected with Ensemble Density Functional Theory Method: Application to <i>trans</i> -Penta-2,4-dieniminium Cation. Journal of Chemical Theory and Computation, 2018, 14, 4499-4512.	2.3	30
349	Ab initiostudies of neutral and anionic p-benzoquinone–water clusters. Journal of Chemical Physics, 2003, 118, 8681-8686.	1.2	29
350	Electronic structure of silver subnanowires in self-assembled organic nanotubes: Density functional calculations. Physical Review B, 2003, 67, .	1.1	29
351	Aqua dissociation nature of cesium hydroxide. Journal of Chemical Physics, 2004, 121, 204.	1.2	29
352	Undissociated versus Dissociated Structures for Water Clusters and Ammoniaâ^Water Clusters: (H2O)n and NH3(H2O)nâ^'1 (n = 5, 8, 9, 21). Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 6527-6532.	1.1	29
353	Structures, energetics, vibrational spectra of NH4+(H2O)n=4,6 clusters: Ab initio calculations and first principles molecular dynamics simulations. Journal of Chemical Physics, 2008, 128, 244304.	1.2	29
354	Intriguing Electrostatic Potential of CO: Negative Bond-ends and Positive Bond-cylindrical-surface. Scientific Reports, 2015, 5, 16307.	1.6	29
355	Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction. Scientific Reports, 2016, 6, 20132.	1.6	29
356	Functional molecules and materials by Ï€â€Interaction based quantum theoretical design. International Journal of Quantum Chemistry, 2016, 116, 622-633.	1.0	29
357	Unveiling the Role of Charge Transfer in Enhanced Electrochemical Nitrogen Fixation at Single-Atom Catalysts on BX Sheets (X = As, P, Sb). Journal of Physical Chemistry Letters, 2022, 13, 4530-4537.	2.1	29
358	Relationship between spectral intensities and nonlinear optical properties. Journal of Chemical Physics, 1997, 107, 6515-6520.	1.2	28
359	Ab initio atomistic dynamical study of an excess electron in water. Computational Materials Science, 2001, 21, 291-300.	1.4	28
360	Dissolution Nature of Cesium Fluoride by Water Moleculesâ€. Journal of Physical Chemistry B, 2006, 110, 3808-3815.	1.2	28

#	Article	IF	CITATIONS
361	Comparison of cationic, anionic and neutral hydrogen bonded dimers. Physical Chemistry Chemical Physics, 2010, 12, 6278.	1.3	28
362	Theoretical Study of the Electron Transport in Graphene with Vacancy and Residual Oxygen Defects after High-Temperature Reduction. Journal of Physical Chemistry C, 2011, 115, 9719-9725.	1.5	28
363	An Imidazoliumâ€Based Fluorescent Cyclophane for the Selective Recognition of Iodide. Chemistry - an Asian Journal, 2012, 7, 658-663.	1.7	28
364	Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy, 2019, 60, 324-331.	8.2	28
365	Selective separation of Xe/Kr and adsorption of water in a microporous hydrogen-bonded organic framework. RSC Advances, 2019, 9, 36808-36814.	1.7	28
366	cyclo-Dodecaoxygen, O12: comparison with the experimentally characterized S12 molecule. Journal of the American Chemical Society, 1989, 111, 7746-7749.	6.6	27
367	Cation Affinities of Cyclohexadepsipeptide:  Ab Initio Study. Journal of Physical Chemistry A, 1999, 103, 2751-2755.	1.1	27
368	High-temperature in situ crystallographic observation of reversible gas sorption in impermeable organic cages. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14156-14161.	3.3	27
369	Description of ground and excited electronic states by ensemble density functional method with extended active space. Journal of Chemical Physics, 2017, 147, 064104.	1.2	27
370	Compositional and Dimensional Control of 2D and Quasiâ€⊋D Lead Halide Perovskites in Water. Advanced Functional Materials, 2019, 29, 1900966.	7.8	27
371	Unfolding the Influence of Metal Doping on Properties of CsPbI ₃ Perovskite. Small Methods, 2020, 4, 2000296.	4.6	27
372	A New Type of Helix Pattern in Polyalanine Peptide. Journal of the American Chemical Society, 2001, 123, 514-515.	6.6	26
373	p-benzoquinone-benzene clusters as potential nanomechanical devices: A theoretical study. Journal of Chemical Physics, 2004, 121, 841-846.	1.2	26
374	Interactions of Neutral and Cationic Transition Metals with the Redox System of Hydroquinone and Quinone: Theoretical Characterization of the Binding Topologies, and Implications for the Formation of Nanomaterials. Chemistry - A European Journal, 2006, 12, 4885-4892.	1.7	26
375	Structure, Stability, Thermodynamic Properties, and Infrared Spectra of the Protonated Water Octamer H ⁺ (H ₂ 0) ₈ . Journal of Physical Chemistry A, 2008, 112, 10120-10124.	1.1	26
376	Inverse Transfer Method Using Polymers with Various Functional Groups for Controllable Graphene Doping. ACS Nano, 2014, 8, 7968-7975.	7.3	26
377	Entropy-driven structures of the hexaaqua-sodium(I). Chemical Physics Letters, 1993, 216, 305-308.	1.2	25
378	Origin of contrasting surface core-level shifts at theBe(101Â⁻0)andMg(101Â⁻0)surfaces. Physical Review B, 2000, 61, 9975-9978.	1.1	25

#	Article	IF	CITATIONS
379	Size scaling of intramolecular charge transfer driven optical properties of substituted polyenes and polyynes. Journal of Chemical Physics, 2003, 119, 7519-7524.	1.2	25
380	Dissolution nature of the lithium hydroxide by water molecules. Journal of Chemical Physics, 2005, 123, 084321.	1.2	25
381	A Radical Polymer as a Twoâ€Dimensional Organic Half Metal. Chemistry - A European Journal, 2010, 16, 12141-12146.	1.7	25
382	Structural and Mechanistic Insights into Development of Chemical Tools to Control Individual and Interâ€Related Pathological Features in Alzheimer's Disease. Chemistry - A European Journal, 2017, 23, 2706-2715.	1.7	25
383	Multiphotoluminescence from a Triphenylamine Derivative and Its Application in White Organic Lightâ€Emitting Diodes Based on a Single Emissive Layer. Advanced Materials, 2019, 31, e1900613.	11.1	25
384	Atomic scale study of black phosphorus degradation. RSC Advances, 2020, 10, 350-355.	1.7	25
385	Dimer to Monomer Phase Transition in Alkali-Metal Fullerides: Magnetic Susceptibility Changes. Physical Review Letters, 2000, 84, 2425-2428.	2.9	24
386	A New Type of Ionophore Family Utilizing the Cation-Olefinic π Interaction: Theoretical Study of [n]Beltenes. Journal of Organic Chemistry, 2002, 67, 1848-1851.	1.7	24
387	Insights into the Structure of Cyclohexane from Femtosecond Degenerate Four-Wave Mixing Spectroscopy and Ab Initio Calculations. Journal of the American Chemical Society, 2003, 125, 16455-16462.	6.6	24
388	Theoretical insights into the mechanism of acetylcholinesterase-catalyzed acylation of acetylcholine. Journal of Computational Chemistry, 2005, 26, 606-611.	1.5	24
389	How Can We Make Stable Linear Monoatomic Chains? Gold-Cesium Binary Subnanowires as an Example of a Charge-Transfer-Driven Approach to Alloying. Physical Review Letters, 2007, 98, 076101.	2.9	24
390	Structural basis of triclosan resistance. Journal of Structural Biology, 2011, 174, 173-179.	1.3	24
391	Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Nanoscale, 2013, 5, 11094.	2.8	24
392	Formation of a photoactive quasi-2D formamidinium lead iodide perovskite in water. Journal of Materials Chemistry A, 2019, 7, 25785-25790.	5.2	24
393	Sulfur clusters: structure, infrared, and Raman spectra of cyclo-S6and comparison with the hypothetical cyclo-O6molecule. Molecular Physics, 1992, 76, 537-546.	0.8	23
394	Hydrogen-bonded array ofNH2on the Si(100) surface. Physical Review B, 2000, 62, 1607-1610.	1.1	23
395	Ab initio investigations on the HOSO2+O2→SO3+HO2 reaction. Journal of Chemical Physics, 2000, 112, 723-730.	1.2	23
396	Ground state structures and excited state dynamics of pyrrole-water complexes: <i>Ab initio</i> excited state molecular dynamics simulations. Journal of Chemical Physics, 2008, 128, 034304.	1.2	23

#	Article	lF	CITATIONS
397	Binary complexes of tertiary amines with phenylacetylene. Dispersion wins over electrostatics. Physical Chemistry Chemical Physics, 2010, 12, 6150.	1.3	23
398	Water trimer cation. Theoretical Chemistry Accounts, 2011, 130, 543-548.	0.5	23
399	Self-consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs. Journal of Chemical Physics, 2016, 145, 244104.	1.2	23
400	Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS ₂ . Nanoscale, 2017, 9, 10647-10652.	2.8	23
401	Hydrated hydride anion clusters. Journal of Chemical Physics, 2007, 127, 164311.	1.2	22
402	Diameter- and Length-Dependent Volume Plasmon Excitation of Bismuth Nanorods Investigated by Electron Energy Loss Spectroscopy. Chemistry of Materials, 2007, 19, 3912-3916.	3.2	22
403	Turnâ€On Ratiometric Fluorescent Probe for Selective Discrimination of Cr ³⁺ from Fe ³⁺ in Aqueous Media for Living Cell Imaging. Chemistry - A European Journal, 2015, 21, 16349-16353.	1.7	22
404	Using the GVB Ansatz to develop ensemble DFT method for describing multiple strongly correlated electron pairs. Physical Chemistry Chemical Physics, 2016, 18, 21040-21050.	1.3	22
405	On effective methods to treat solvent effects in macromolecular mechanics and simulations. Chemical Physics Letters, 1989, 156, 261-268.	1.2	21
406	Oscillatory energetics of flat Ag films on MgO(001). Physical Review B, 2001, 63, .	1.1	21
407	Fluorogenic sensing of CH3CO2â^' and H2PO4â^' by ditopic receptor through conformational change. Organic and Biomolecular Chemistry, 2012, 10, 2094.	1.5	21
408	Novel Ionophores with 2 <i>n</i> -Crown- <i>n</i> Topology: Anion Sensing via Pure Aliphatic C–H··A·Anion Hydrogen Bonding. Organic Letters, 2014, 16, 334-337.	2.4	21
409	Surface-Effect-Induced Optical Bandgap Shrinkage in GaN Nanotubes. Nano Letters, 2015, 15, 4472-4476.	4.5	21
410	A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 3511-3519.	5.2	21
411	Electronic symmetry breaking in polyatomic molecules. Multiconfiguration selfâ€consistent field study of the cyclopropenyl radical C3H3. Journal of Chemical Physics, 1984, 80, 338-343.	1.2	20
412	Energetics and pattern analysis of crystals of proflavine deoxydinucleoside phosphate complex. Journal of the American Chemical Society, 1985, 107, 227-234.	6.6	20
413	Why the hydration energy of Au+ is larger for the second water molecule than the first one: Skewed orbitals overlap. Journal of Chemical Physics, 2005, 123, 074328.	1.2	20
414	A π-stacked phenylacetylene and 1,3,5-triazine heterodimer: a combined spectroscopic and ab initio investigation. Physical Chemistry Chemical Physics, 2009, 11, 11207.	1.3	20

#	Article	IF	CITATIONS
415	Structure, Stabilities, Thermodynamic Properties, and IR Spectra of Acetylene Clusters (C ₂ H ₂) _{<i>n</i>=2â^'5} . Journal of Chemical Theory and Computation, 2010, 6, 3190-3197.	2.3	20
416	Theoretical Design of Nanomaterials and Nanodevices: Nanolensing, Supermagnetoresistance, and Ultrafast DNA Sequencing. Journal of Physical Chemistry C, 2011, 115, 16247-16257.	1.5	20
417	Design of Carbene-Based Organocatalysts for Nitrogen Fixation: Theoretical Study. Journal of Chemical Theory and Computation, 2012, 8, 1983-1988.	2.3	20
418	A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18635-18640.	5.2	20
419	A "turn-on―fluorescent probe for the detection of permanganate in aqueous media. Chemical Communications, 2019, 55, 1470-1473.	2.2	20
420	Networks of Water Molecules in a Proflavine Deoxydinucleoside Phosphate Complex. Journal of Biomolecular Structure and Dynamics, 1983, 1, 263-285.	2.0	19
421	Adsorption structure of 1,4-cyclohexadiene on Si(001). Journal of Chemical Physics, 2002, 116, 3800-3804.	1.2	19
422	Homology modeling and molecular dynamics study of West Nile virus NS3 protease: A molecular basis for the catalytic activity increased by the NS2B cofactor. Proteins: Structure, Function and Bioinformatics, 2006, 65, 692-701.	1.5	19
423	(R)-Lipo-Diaza-18-Crown-6 Self-Assembled Monolayer as a Selective Serotonin Receptor. Analytical Chemistry, 2009, 81, 3843-3850.	3.2	19
424	Nature of anion-templated π+–π+ interactions. Physical Chemistry Chemical Physics, 2011, 13, 11841.	1.3	19
425	pH-Responsive self-duplex of PyA-substituted oligodeoxyadenylate in graphene oxide solution as a molecular switch. Organic and Biomolecular Chemistry, 2011, 9, 7434.	1.5	19
426	Size-dependent conformational change in halogen–π interaction: from benzene to graphene. Chemical Communications, 2017, 53, 6140-6143.	2.2	19
427	Effect of Organic–Cation Exchange Reaction of Perovskites in Water: H-Bond Assisted Self-Assembly, Black Phase Stabilization, and Single-Particle Imaging. ACS Applied Energy Materials, 2019, 2, 4496-4503.	2.5	19
428	Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons. Journal of Physical Chemistry A, 2021, 125, 9414-9420.	1.1	19
429	Structures and energetics of Zn(NH3)2+n (n=4–6). Coordination number of Zn2+ by ammine. Chemical Physics Letters, 1993, 216, 309-312.	1.2	18
430	Change of Internal Hydrogen Bonding of Methyl Red upon Photoisomerization Monitored by Forced Rayleigh Scattering. Journal of Physical Chemistry B, 1999, 103, 2355-2360.	1.2	18
431	Theoretical Study of Microscopic Molecular Structure of Helicenebisquinone Aggregates. Journal of Physical Chemistry B, 2000, 104, 11006-11009.	1.2	18
432	Insights into the Nature of SiH4â^'BH3Complex:Â Theoretical Investigation of New Mechanistic Pathways Involving SiH3•and BH4•Radicals. Journal of Physical Chemistry A, 2002, 106, 6817-6822.	1.1	18

#	Article	IF	CITATIONS
433	A Color Version of the Hinsberg Test: 1°–3° Amine Indicator. Chemistry - A European Journal, 2007, 13, 3082-3088.	1.7	18
434	A Combined Spectroscopic and ab Initio Investigation of Phenylacetyleneâ^'Methylamine Complex. Observation of σ and π Type Hydrogen-Bonded Configurations and Fluorescence Quenching by Weak Câ^'H···N Hydrogen Bondingâ€. Journal of Physical Chemistry A, 2010, 114, 11347-11352.	1.1	18
435	Coordinate space translation technique for simulation of electronic process in the ion–atom collision. Journal of Chemical Physics, 2011, 134, 154308.	1.2	18
436	Observable Structures of Small Neutral and Anionic Gold Clusters. Chemistry - A European Journal, 2012, 18, 13203-13207.	1.7	18
437	Solution-processable conductive micro-hydrogels of nanoparticle/graphene platelets produced by reversible self-assembly and aqueous exfoliation. Journal of Materials Chemistry A, 2013, 1, 12900.	5.2	18
438	Molecular sensing using armchair graphene nanoribbon. Journal of Computational Chemistry, 2014, 35, 1916-1920.	1.5	18
439	First-order and continuous melting transitions in two-dimensional Lennard-Jones systems and repulsive disks. Physical Review E, 2019, 99, 022145.	0.8	18
440	From Gas Phase Clusters to Nanomaterials: An Overview of Theoretical Insights. Bulletin of the Korean Chemical Society, 2003, 24, 757-762.	1.0	18
441	Hydration analysis of the intercalated complex of deoxydinucleoside phosphate and proflavin: computer simulations. The Journal of Physical Chemistry, 1985, 89, 3655-3663.	2.9	17
442	Theoretical study of water adsorption on the Ge(100) surface. Physical Review B, 2002, 66, .	1.1	17
443	HF(H[sub 2]O)[sub n] clusters with an excess electron: Ab initio study. Journal of Chemical Physics, 2004, 121, 11083.	1.2	17
444	Understanding Clusters toward the Design of Functional Molecules and Nanomaterials. Bulletin of the Chemical Society of Japan, 2007, 80, 1437-1450.	2.0	17
445	Structure, Stability, Thermodynamic Properties, and IR Spectra of the Protonated Water Decamer H ⁺ (H ₂ 0) ₁₀ . Journal of Physical Chemistry A, 2009, 113, 9237-9242.	1.1	17
446	Fast benchtop visualization of graphene grain boundaries using adhesive properties of defects. Chemical Communications, 2013, 49, 5474.	2.2	17
447	Brueckner-Goldstone quantum Monte Carlo for correlation energies and quasiparticle energy bands of one-dimensional solids. Physical Review B, 2014, 90, .	1.1	17
448	Limit of Metastability for Liquid and Vapor Phases of Water. Physical Review Letters, 2014, 112, 157802.	2.9	17
449	Violation of DNA neighbor exclusion principle in RNA recognition. Chemical Science, 2016, 7, 3581-3588.	3.7	17
450	Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage. Journal of Materials Chemistry A, 2018, 6, 15961-15967.	5.2	17

#	Article	IF	CITATIONS
451	Effect of dimensionality on transition-metal elements of groups 3–7. Physical Review B, 2006, 74, .	1.1	16
452	Vibrational spectra of butatriene (C4H4) and pentatetraene (C5H4): is pentatetraene bent?. Journal of the American Chemical Society, 1991, 113, 2452-2459.	6.6	15
453	Roles of central and terminal carbon atoms in infrared and Raman intensities of polyenes: Analysis of atomic polar and polarizability tensors. Journal of Chemical Physics, 1997, 107, 4881-4885.	1.2	15
454	Mechanistic Insight into the Inactivation of Carboxypeptidase A by α-Benzyl-2-oxo-1,3-oxazolidine-4-acetic Acid, a Novel Type of Irreversible Inhibitor for Carboxypeptidase A with No Stereospecificity. Journal of Organic Chemistry, 2001, 66, 6462-6471.	1.7	15
455	Self-assembled organic nanotubes and self-synthesized silver subnanowire arrays in an ambient solution phase. Current Applied Physics, 2002, 2, 65-69.	1.1	15
456	Dissolution of a base (RbOH) by water clusters. Journal of Chemical Physics, 2004, 121, 4665-4670.	1.2	15
457	Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study. Journal of Chemical Theory and Computation, 2011, 7, 3447-3459.	2.3	15
458	Anisotropic Charge Distribution and Anisotropic van der Waals Radius Leading to Intriguing Anisotropic Noncovalent Interactions. Scientific Reports, 2015, 4, 5826.	1.6	15
459	Organic cation steered interfacial electron transfer within organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4305-4312.	5.2	15
460	Synthesis of Unsymmetrical Chiral Triaza-18-crown-6 and Diaza-12-crown-4 with a Pendant Group. Journal of Organic Chemistry, 2000, 65, 7225-7227.	1.7	14
461	On the microscopic interaction of para-chlorofluorobenzene with water. Journal of Chemical Physics, 2001, 115, 10045-10047.	1.2	14
462	Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides. Optics Express, 2010, 18, 16139.	1.7	14
463	Anion Binding by Electron-Deficient Arenes Based on Complementary Geometry and Charge Distribution. Journal of Chemical Theory and Computation, 2012, 8, 274-280.	2.3	14
464	Linear and nonlinear optical properties of indeno[2,1-b]fluorene and its structural isomers. Physical Chemistry Chemical Physics, 2014, 16, 24592-24597.	1.3	14
465	Rotational conformational energetics of stiff aromatic polyimides: Effects of exchange repulsions, dipole-moiety interactions, and l€-conjugations. Journal of Chemical Physics, 1997, 107, 10201-10206.	1.2	13
466	Solvent rearrangement for an excited electron of the iodide–water pentamer. Molecular Physics, 2004, 102, 2485-2489.	0.8	13
467	Theoretical studies on hydroquinone-benzene clusters. Journal of Chemical Physics, 2005, 122, 014305.	1.2	13
468	Noncovalent Functionalization with Alkali Metal to Separate Semiconducting from Metallic Carbon Nanotubes: A Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 4309-4313.	1.5	13

#	Article	IF	CITATIONS
469	Geometrical and Electronic Characteristics of Au <i>_n</i> O ₂ [–] (<i>n</i> = 2–7). Journal of Physical Chemistry C, 2015, 119, 14383-14391.	1.5	13
470	Highly selective CO ₂ adsorption performance of carbazole based microporous polymers. RSC Advances, 2015, 5, 41745-41750.	1.7	13
471	An efficient non-reaction based colorimetric and fluorescent probe for the highly selective discrimination of Pd ⁰ and Pd ²⁺ in aqueous media. RSC Advances, 2016, 6, 60546-60549.	1.7	13
472	Template free facile synthesis of mesoporous mordenite for bulky molecular catalytic reactions. Journal of Industrial and Engineering Chemistry, 2018, 57, 363-369.	2.9	13
473	Ambient-Stable Cubic-Phase Hybrid Perovskite Reaching the Shockley–Queisser Fill Factor Limit via Inorganic Additive-Assisted Process. ACS Applied Energy Materials, 2018, 1, 5865-5871.	2.5	13
474	New Quantum Chemical Parameter for the Substituent Effect in Benzene Based on Charge Flux. Journal of Physical Chemistry A, 2003, 107, 3577-3579.	1.1	12
475	Mechanistic Study on Electrochemical Reduction of Calix[4]quinone in Acetonitrile Containing Water§. Journal of Physical Chemistry B, 2004, 108, 4927-4936.	1.2	12
476	Anomalous behavior of mercury in one dimension: Density-functional calculations. Physical Review B, 2005, 71, .	1.1	12
477	Theoretical Studies on the Mechanism of Acid-Promoted Hydrolysis of N-Formylaziridine in Comparison with Formamide. Journal of Organic Chemistry, 2005, 70, 2651-2659.	1.7	12
478	Self-Assembled Thermally Highly Stable 1-Dimensional Proton Arrays. Journal of Physical Chemistry B, 2010, 114, 7216-7221.	1.2	11
479	Comparison of Arsenic Acid with Phosphoric Acid in the Interaction with a Water Molecule and an Alkali/Alkaline-Earth Metal Cation. Journal of Physical Chemistry A, 2011, 115, 11355-11361.	1.1	11
480	Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation. Physical Review X, 2014, 4, .	2.8	11
481	Isoreticular MOFs based on a rhombic dodecahedral MOP as a tertiary building unit. CrystEngComm, 2014, 16, 6391-6397.	1.3	11
482	Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano, 2017, 11, 3207-3212.	7.3	11
483	Adsorption of Carbon Tetrahalides on Coronene and Graphene. Journal of Physical Chemistry C, 2017, 121, 14968-14974.	1.5	11
484	Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Research, 2020, 13, 932-938.	5.8	11
485	Aromatic π–π interaction mediated by a metal atom: structure and ionization of the bis(Ε6-benzene)chromium–benzene cluster. Physical Chemistry Chemical Physics, 2010, 12, 7648.	1.3	10
486	Plasmon nanofocusing in a dielectric hemisphere covered in tapered metal film. Optics Express, 2012, 20, 12866.	1.7	10

#	Article	IF	CITATIONS
487	Cyanoacetic acid tethered thiophene for well-matched LUMO level in Ru(II)-terpyridine dye sensitized solar cells. Dyes and Pigments, 2016, 126, 270-278.	2.0	10
488	Anomalous Ambipolar Transport of Organic Semiconducting Crystals via Control of Molecular Packing Structures. ACS Applied Materials & Interfaces, 2017, 9, 27839-27846.	4.0	10
489	A high performance N-doped graphene nanoribbon based spintronic device applicable with a wide range of adatoms. Nanoscale Advances, 2020, 2, 5905-5911.	2.2	10
490	Ab Initio Study of Peroxyacetic Nitric Anhydride and Peroxyacetyl Radical:Â Characteristic Infrared Band of Peroxyacetyl Radical. Journal of Physical Chemistry A, 2000, 104, 2613-2617.	1.1	9
491	Large orbital magnetic moment and Coulomb correlation effects inFeBr2. Physical Review B, 2002, 65, .	1.1	9
492	Theoretical study of photoinduced electron transfer from tetramethylethylene to tetracyanoethylene. Journal of Chemical Physics, 2003, 119, 8854-8863.	1.2	9
493	NH ₄ ⁺ Resides Inside the Water 20-mer Cage As Opposed to H ₃ O ⁺ , Which Resides on the Surface: A First Principles Molecular Dynamics Simulation Study. Journal of Chemical Theory and Computation, 2011, 7, 3461-3465.	2.3	9
494	Structure and energetics of realistic carbynes: (carbohydroxy)carbyne (HOCOC.tplbond.). Journal of the American Chemical Society, 1982, 104, 1457-1461.	6.6	8
495	Microscopic effect of an applied voltage on the solvated gramicidin a transmembrane channel in the presence of Na+ and K+ cations. Journal of Computational Chemistry, 1985, 6, 256-263.	1.5	8
496	Molecular Structure of p-Cyclohexylaniline. Comparison of Results Obtained by X-ray Diffraction with Gas Phase Laser Experiments and ab Initio Calculations. Journal of Physical Chemistry A, 2000, 104, 11593-11600.	1.1	8
497	Structural Characterization of the Molten Globule State of Apomyoglobin by Limited Proteolysis and HPLC-Mass Spectrometryâ€. Biochemistry, 2005, 44, 7490-7496.	1.2	8
498	Structure, stability, thermodynamic properties and IR spectra of the protonated water cluster H+(H2O)9. Molecular Physics, 2009, 107, 1169-1176.	0.8	8
499	Counterintuitive Coulomb hole around the bond midplane. Journal of Chemical Physics, 2010, 132, 204102.	1.2	8
500	Efficient electron dynamics with the planewave-based real-time time-dependent density functional theory: Absorption spectra, vibronic electronic spectra, and coupled electron-nucleus dynamics. Journal of Chemical Physics, 2011, 135, 244112.	1.2	8
501	A Facile Route for Patterned Growth of Metal–Insulator Carbon Lateral Junction through One-Pot Synthesis. ACS Nano, 2015, 9, 8352-8360.	7.3	8
502	Versatile p‶ype Chemical Doping to Achieve Ideal Flexible Graphene Electrodes. Angewandte Chemie, 2016, 128, 6305-6309.	1.6	8
503	Ferromagnetism in Monatomic Chains: Spin-Dependent Bandwidth Narrowing/Broadening. Journal of Physical Chemistry C, 2017, 121, 20994-21000.	1.5	8
504	Hydration structures and energetics of phospholipid. Journal of Computational Chemistry, 1987, 8, 57-66.	1.5	7

#	Article	IF	CITATIONS
505	INSIGHTS FROM THEORETICAL INVESTIGATIONS OF AQUEOUS CLUSTERS. , 2002, , 1642-1683.		7
506	Highly Stereospecific Epimerization of α-Amino Acids: Conducted Tour Mechanism. Journal of Organic Chemistry, 2003, 68, 6571-6575.	1.7	7
507	Metastable phase of symmetric dimers on Si(001). Physical Review B, 2004, 69, .	1.1	7
508	Homology modeling and molecular dynamics study of chorismate synthase from Shigella flexneri. Journal of Molecular Graphics and Modelling, 2006, 25, 434-441.	1.3	7
509	Photodissociation of Hydrated Hydrogen Iodide Clusters. ChemPhysChem, 2008, 9, 567-571.	1.0	7
510	Graphene nanonet for biological sensing applications. Nanotechnology, 2013, 24, 375302.	1.3	7
511	Halides with Fifteen Aliphatic C–H··Anion Interaction Sites. Scientific Reports, 2016, 6, 30123.	1.6	7
512	Effects of an electric field on interaction of aromatic systems. Journal of Computational Chemistry, 2016, 37, 971-975.	1.5	7
513	Accurate Description of Nuclear Quantum Effects with High-Order Perturbed Path Integrals (HOPPI). Journal of Chemical Theory and Computation, 2020, 16, 1128-1135.	2.3	7
514	Rational design of metal–ligands for the conversion of CH ₄ and CO ₂ to acetates: role of acids and Lewis acids. Journal of Materials Chemistry A, 2020, 8, 14671-14679.	5.2	7
515	Geometric isomerism in triplet carbenes: carbohydroxycarbene. Journal of the American Chemical Society, 1980, 102, 5389-5390.	6.6	6
516	Ab Initio Conformational Study of 1,2:4,5-Di-O-isopropylidene-myo-inositol. The Journal of Physical Chemistry, 1996, 100, 10111-10115.	2.9	6
517	Electron pair density in the lowestlî£u+ andlî£g+ states of H2. Journal of Chemical Physics, 2011, 135, 074111.	1.2	6
518	H ₂ -Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of Titanium Mono- and Dications. Journal of Chemical Theory and Computation, 2011, 7, 969-978.	2.3	6
519	An effective approach to realize graphene based p-n junctions via adsorption of donor and acceptor molecules. Carbon, 2019, 153, 525-530.	5.4	6
520	Band Gap Narrowing of Zinc Orthogermanate by Dimensional and Defect Modification. Journal of Physical Chemistry C, 2019, 123, 14573-14581.	1.5	6
521	Highly Efficient Pureâ€Blue Perovskite Lightâ€Emitting Diode Leveraging CsPbBr <i>_x</i> Cl _{3â"} <i>_x</i> /Cs ₄ PbBr <i>_x</i>	/i>Cl <i>s</i> sab>6	â ^'∢ /sub>≺i≻<
522	Model calculation of the band energy gap for poly(p-phenylenevinylene). Journal of Physics Condensed Matter, 2001, 13, 579-593.	0.7	5

30

#	Article	IF	CITATIONS
523	Theoretical Study of the Gas Phase Sc + (NO, O2) → ScO + (N, O) Reactions. Journal of Physical Chemistry A, 2002, 106, 9600-9605.	1.1	5
524	Nested Fermi surfaces, optical peaks, and laser-induced structural transition in Al. Physical Review B, 2004, 69, .	1.1	5
525	Theoretical Approaches to the Design of Functional Nanomaterials. Theoretical and Computational Chemistry, 2004, 15, 119-170.	0.2	5
526	Thermally Stable Intermolecular Proton Bonds in Polyaromatic Aldehyde Crystals. Chemistry - an Asian Journal, 2011, 6, 2055-2061.	1.7	5
527	Ultralow Raman lasing threshold and enhanced gain of whispering gallery modes in silica microspheres. Physical Review A, 2012, 85, .	1.0	5
528	Observation of Mg-induced structural and electronic properties of graphene. Applied Physics Letters, 2016, 109, .	1.5	5
529	Water Splitting: One-Step Synthesis of CoS-Doped β-Co(OH)2 @Amorphous MoS2+ x Hybrid Catalyst Grown on Nickel Foam for High-Performance Electrochemical Overall Water Splitting (Adv. Funct.) Tj ETQq1 1 0	.78 4.3 14 r	gBT5/Overloci
530	Fuel Cells: Highly Efficient Oxygen Reduction Reaction Activity of Graphitic Tube Encapsulating Nitrided Co <i>_x</i> Fe <i>_y</i> Alloy (Adv. Energy Mater. 25/2018). Advanced Energy Materials, 2018, 8, 1870115.	10.2	5
531	Quantum Monte Carlo Study of the Water Dimer Binding Energy and Halogenâ^ï€ Interactions. Journal of Physical Chemistry A, 2019, 123, 7785-7791.	1.1	5
532	Coarse and fine-tuning of lasing transverse electromagnetic modes in coupled all-inorganic perovskite quantum dots. Nano Research, 2021, 14, 108-113.	5.8	5
533	Sparse Gaussian Process Regression-Based Machine Learned First-Principles Force-Fields for Saturated, Olefinic, and Aromatic Hydrocarbons. ACS Physical Chemistry Au, 2022, 2, 260-264.	1.9	5
534	C ₆₀ Adsorbed on TiO ₂ Drives Dark Generation of Hydroxyl Radicals. ACS Catalysis, 2022, 12, 5990-5996.	5.5	5
535	Interaction of phospholipids (Lysophosphatidylethanolamines) with water and sodium cation. Journal of Biological Physics, 1986, 14, 49-56.	0.7	4
536	Photorealistic image generation of molecular structure on PC screen using the ray-tracing technique. Journal of Molecular Graphics, 1992, 10, 218-221.	1.7	4
537	Theoretical Studies of Regioselectivity of myo-Inositol Derivatives:  Importance of Solvent Dielectric Constants. Journal of Physical Chemistry A, 1997, 101, 3776-3783.	1.1	4
538	Organicâ^'Inorganic Hybrid Compounds of Li with Bisimidazole Derivatives:  Li Ion Binding Study and Topochemical Properties. Inorganic Chemistry, 2006, 45, 8062-8069.	1.9	4
539	Controlling metal nanotoppings on the tip of silicide nanostructures. Nanotechnology, 2009, 20, 245605.	1.3	4
540	Structures of triâ€; tetraâ€; and hexahydrated hydride anion clusters. International Journal of Quantum Chemistry, 2009, 109, 1820-1826.	1.0	4

#	Article	IF	CITATIONS
541	CO Capture and Conversion to HOCO Radical by Ionized Water Clusters. Journal of Physical Chemistry A, 2014, 118, 7274-7279.	1.1	4
542	Sulfur-vacancy-dependent geometric and electronic structure of bismuth adsorbed on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow>. Physical Review B, 2018, 97, .</mml:math 	ⁱ 1.1	4
543	Anisotropic and amphoteric characteristics of diverse carbenes. Physical Chemistry Chemical Physics, 2018, 20, 13722-13733.	1.3	4
544	Spectromicroscopic observation of a live single cell in a biocompatible liquid-enclosing graphene system. Nanoscale, 2018, 10, 150-157.	2.8	4
545	Short-term Outcomes of Ceramic Coated Metal-on-Metal Large Head in Total Hip Replacement Arthroplasty. Hip and Pelvis, 2018, 30, 12-17.	0.6	4
546	Supraâ€Binary Polarization in a Ferroelectric Nanowire. Advanced Materials, 2021, 33, e2101981.	11.1	4
547	Two Liquid–Liquid Phase Transitions in Confined Water Nanofilms. Journal of Physical Chemistry Letters, 2021, 12, 4786-4792.	2.1	4
548	Trifluoroethanol Increases the Stability of Δ5-3-Ketosteroid Isomerase. Journal of Biological Chemistry, 2002, 277, 23414-23419.	1.6	3
549	Clusters to functional molecules, nanomaterials, and molecular devices. , 2005, , 963-993.		3
550	Weak to Strong Hydrogen Bonds. , 2006, , 149-192.		3
551	Hydrogen detachment of the hexahydrated hydroiodic acid upon attaching an excess electron. Molecular Physics, 2007, 105, 2577-2581.	0.8	3
552	Antiferromagnetic spin ordering in the dissociative adsorption of H2 on Si(001): Density-functional calculations. Journal of Chemical Physics, 2009, 131, 244704.	1.2	3
553	Tuning Molecular Selfâ€Assembly Toward Intriguing Nanomaterial Architectures. Chemistry - A European Journal, 2013, 19, 9118-9122.	1.7	3
554	Conformational Energies of Substrates and Inhibitors for Carboxypeptidase A: Stereoelectronic Effect. Journal of Biomolecular Structure and Dynamics, 1995, 12, 1033-1040.	2.0	2
555	Discrete velocity random motion in an external field. Physical Review E, 2000, 61, 3207-3211.	0.8	2
556	Local-field enhancement of spontaneous decay in nanosystems: some estimations for dielectric particles. Applied Physics B: Lasers and Optics, 2004, 79, 863-870.	1.1	2
557	Pseudorotation-driven dynamical structure of the tropyl radical. Journal of Chemical Physics, 2006, 125, 164332.	1.2	2
558	Relation between primes and nontrivial zeros in the Riemann hypothesis; Legendre polynomials, modified zeta function and SchrĶdinger equation. Journal of Mathematical Physics, 2012, 53, 122108.	0.5	2

#	Article	IF	CITATIONS
559	Time dependence of the position momentum and position velocity uncertainties in gapped graphene. Physical Review B, 2012, 85, .	1.1	2
560	Disulfuric acid dissociated by two water molecules: ab initio and density functional theory calculations. Physical Chemistry Chemical Physics, 2015, 17, 28556-28564.	1.3	2
561	Signature of a quantum dimensional transition in the spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfrac> <mml:mn> 1 </mml:mn> <mml:mn> 2 antiferromagnetic Heisenberg model on a square lattice and space reduction in the matrix product state. Physical Review B. 2019. 99</mml:mn></mml:mfrac></mml:math 	n>1.1	nfrac>
562	Facile room-temperature self-assembly of extended cation-free guanine-quartet network on Mo-doped Au(111) surface. Nanoscale Advances, 2021, 3, 3867-3874.	2.2	2
563	Fast atomic structure optimization with on-the-fly sparse Gaussian process potentials [*] . Journal of Physics Condensed Matter, 2022, 34, 344007.	0.7	2
564	Hydrogen detachment of the hydrated hydrohalogen acids upon attaching an excess electron. Journal of Chemical Physics, 2008, 128, 104310.	1.2	1
565	Chiral Transformation in Protonated and Deprotonated Adipic Acids through Multistep Internal Proton Transfer. Chemistry - A European Journal, 2010, 16, 10373-10379.	1.7	1
566	Graphene: Van der Waals Epitaxial Double Heterostructure: InAs/Single‣ayer Graphene/InAs (Adv.) Tj ETQqO 0 () rgBT /Ov PI-1	erlock 10 Tf !
567	Band and bonding characteristics of N2+ ion-doped graphene. RSC Advances, 2016, 6, 84959-84964.	1.7	1
568	Two-Dimensional Icy Water Clusters Between a Pair of Graphene-Like Molecules or Graphene Sheets. Journal of Physical Chemistry C, 2016, 120, 19212-19224.	1.5	1
569	Perovskite Solar Cells: A New Perspective on the Role of A-Site Cations in Perovskite Solar Cells (Adv.) Tj ETQq1 1	0.784314 10.2	rgBT /Overlo
570	Signature of multilayer growth of 2D layered Bi2Se3 through heteroatom-assisted step-edge barrier reduction. Npj 2D Materials and Applications, 2019, 3, .	3.9	1
571	Perovskites: Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications (Adv. Energy Mater. 30/2020). Advanced Energy Materials, 2020, 10, 2070129.	10.2	1
572	Anharmonicityâ€Ðriven Rashba Cohelical Excitons Break Quantum Efficiency Limitation. Advanced Materials, 2021, 33, 2005400.	11.1	1
573	Structure and properties of aromatic 6â€membered polyimides compared to 5â€membered ones. Macromolecular Symposia, 1999, 142, 101-109.	0.4	0
574	Spatially Resolved Electric and Thermal Properties Study of Graphene Field Effect Devices. , 2011, , .		0
575	Cumulant expansion and analytic continuation in Monte Carlo simulation of classical Lennard-Jones clusters. Physical Review E, 2012, 86, 056702.	0.8	0

 $Label \hat{a} \in \mathbb{F}ree \ Polypeptide \hat{a} \in \mathbb{B}ased \ Enzyme \ Detection \ Using \ a \ Graphene \\ \hat{a} \in \mathbb{N}anoparticle \ Hybrid \ Sensor \ (Adv.) \ Tj \ ETQq \\ 0.0 \ rg \\ BT_0 \ Overlock \ Sensor \ (Adv.) \ Tj \ ETQq \\ 11.1 \ Sensor \ (Adv.) \ Tj \ ETQq \\ Sensor \ (Adv.) \ Tj \ Sensor \ (Adv.) \ Sensor \ (Adv.) \ Tj \ (Adv.) \ Sensor \ (Adv.) \ Tj \ (Adv.) \ Tj \ Sensor \ (Adv.) \ (Adv.) \ Sensor \ (Adv.) \ (Adv.) \ Sensor \ (Adv.) \$

#	Article	IF	CITATIONS
577	Selective self-assembly and characterization of GaN nanopyramids onm-plane InGaN/GaN quantum disks. Nanotechnology, 2012, 23, 405602.	1.3	ο
578	De Novo Design Theory: Nanomaterials and Molecular Devices. , 0, , 1111-1120.		0
579	Structure, Spectra, and Thermodynamic Energies of the Water Dimer and Hexamer. , 2000, , 109-117.		Ο
	Highly Efficient Pureâ€Blue Perovskite Lightâ€Emitting Diode Leveraging		

580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580
 580