
Ueli Schibler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5711952/publications.pdf Version: 2024-02-01

HELL SCHIBLED

#	Article	IF	CITATIONS
1	The Mammalian Circadian Timing System: Organization and Coordination of Central and Peripheral Clocks. Annual Review of Physiology, 2010, 72, 517-549.	13.1	1,971
2	Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes and Development, 2000, 14, 2950-2961.	5.9	1,955
3	A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells. Cell, 1998, 93, 929-937.	28.9	1,766
4	Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling. Science, 2000, 289, 2344-2347.	12.6	1,591
5	SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell, 2008, 134, 317-328.	28.9	1,183
6	Circadian Gene Expression in Individual Fibroblasts. Cell, 2004, 119, 693-705.	28.9	904
7	A Web of Circadian Pacemakers. Cell, 2002, 111, 919-922.	28.9	669
8	System-Driven and Oscillator-Dependent Circadian Transcription in Mice with a Conditionally Active Liver Clock. PLoS Biology, 2007, 5, e34.	5.6	584
9	The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell, 1987, 51, 963-973.	28.9	567
10	Rhythms of Mammalian Body Temperature Can Sustain Peripheral Circadian Clocks. Current Biology, 2002, 12, 1574-1583.	3.9	516
11	Peripheral Circadian Oscillators in Mammals: Time and Food. Journal of Biological Rhythms, 2003, 18, 250-260.	2.6	470
12	Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Current Biology, 2000, 10, 1291-1294.	3.9	433
13	DBP, a liver-enriched transcriptional activator, is expressed late in ontogeny and its tissue specificity is determined posttranscriptionally. Cell, 1990, 61, 279-291.	28.9	425
14	REV-ERBα Participates in Circadian SREBP Signaling and Bile Acid Homeostasis. PLoS Biology, 2009, 7, e1000181.	5.6	368
15	CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes and Development, 2000, 14, 679-689.	5.9	354
16	The mammalian circadian timing system: from gene expression to physiology. Chromosoma, 2004, 113, 103-12.	2.2	316
17	Poly(ADP-Ribose) Polymerase 1 Participates in the Phase Entrainment of Circadian Clocks to Feeding. Cell, 2010, 142, 943-953.	28.9	309
18	A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene. Cell, 1989, 57, 1179-1187.	28.9	264

UELI SCHIBLER

#	Article	IF	CITATIONS
19	Properties, Entrainment, and Physiological Functions of Mammalian Peripheral Oscillators. Journal of Biological Rhythms, 2006, 21, 494-506.	2.6	230
20	Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 223-232.	1.1	230
21	Cold-Inducible RNA-Binding Protein Modulates Circadian Gene Expression Posttranscriptionally. Science, 2012, 338, 379-383.	12.6	229
22	Expression of the liver-enriched transcriptional activator protein DBP follows a stringent circadian rhythm. Cell, 1990, 63, 1257-1266.	28.9	227
23	Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes and Development, 2012, 26, 567-580.	5.9	211
24	Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes and Development, 2008, 22, 331-345.	5.9	202
25	Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles. Cell, 2017, 169, 651-663.e14.	28.9	170
26	Blood-Borne Circadian Signal Stimulates Daily Oscillations in Actin Dynamics and SRF Activity. Cell, 2013, 152, 492-503.	28.9	143
27	Cellular oscillators: rhythmic gene expression and metabolism. Current Opinion in Cell Biology, 2005, 17, 223-229.	5.4	124
28	Circadian rhythms – from genes to physiology and disease. Swiss Medical Weekly, 2014, 144, w13984.	1.6	99
29	The daily rhythms of genes, cells and organs. EMBO Reports, 2005, 6, S9-13.	4.5	93
30	Circadian Dbp Transcription Relies on Highly Dynamic BMAL1-CLOCK Interaction with E Boxes and Requires the Proteasome. Molecular Cell, 2012, 48, 277-287.	9.7	90
31	Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene <i>Cirbp</i> . Genes and Development, 2016, 30, 2005-2017.	5.9	73
32	The 2008 Pittendrigh/Aschoff Lecture: Peripheral Phase Coordination in the Mammalian Circadian Timing System. Journal of Biological Rhythms, 2009, 24, 3-15.	2.6	71
33	The daily timing of gene expression and physiology in mammals. Dialogues in Clinical Neuroscience, 2007, 9, 257-272.	3.7	69
34	Circadian time keeping: the daily ups and downs of genes, cells, and organisms. Progress in Brain Research, 2006, 153, 271-282.	1.4	68
35	Transcriptional regulatory logic of the diurnal cycle in the mouse liver. PLoS Biology, 2017, 15, e2001069.	5.6	68
36	Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes and Development, 2021, 35, 329-334	5.9	56

Ueli Schibler

#	Article	IF	CITATIONS
37	How are the regulators regulated?. FASEB Journal, 1991, 5, 309-314.	0.5	53
38	CIRCADIAN RHYTHMS: Liver Regeneration Clocks On. Science, 2003, 302, 234-235.	12.6	53
39	Body temperature cycles: Gatekeepers of circadian clocks. Cell Cycle, 2013, 12, 539-540.	2.6	47
40	New cogwheels in the clockworks. Nature, 1998, 393, 620-621.	27.8	32
41	CIRCADIAN RHYTHMS: ChronobiologyReducing Time. Science, 2001, 293, 437-438.	12.6	25
42	Orphan Nuclear Receptors, Molecular Clockwork, and the Entrainment of Peripheral Oscillators. Novartis Foundation Symposium, 2008, , 89-101.	1.1	16
43	Enlightening the adrenal gland. Cell Metabolism, 2005, 2, 278-281.	16.2	14
44	A pancreatic clock times insulin release. Science, 2015, 350, 628-629.	12.6	14
45	Posttranscriptional mechanisms controlling diurnal gene expression cycles by body temperature rhythms. RNA Biology, 2017, 14, 1294-1298.	3.1	11
46	Unbiased identification of signal-activated transcription factors by barcoded synthetic tandem repeat promoter screening (BC-STAR-PROM). Genes and Development, 2016, 30, 1895-1907.	5.9	10
47	Interaction Between Central and Peripheral Clocks in Mammals. , 2017, , 337-363.		6
48	Senescence of Timing Reverted: NAD+ Rejuvenates the Circadian Clock. Molecular Cell, 2020, 78, 805-807.	9.7	6
49	Oxidation of CLOCK boosts circadian rhythms. Nature Cell Biology, 2019, 21, 1464-1465.	10.3	5
50	BMAL1 dephosphorylation determines the pace of the circadian clock. Genes and Development, 2021, 35, 1076-1078.	5.9	5
51	Selenium cysteine and epileptic seizures. Nature Reviews Molecular Cell Biology, 2018, 19, 753-753.	37.0	3
52	Hepatic Clocks. , 2010, , 501-512.		3
53	The ticking tail: daily oscillations in mRNA poly(A) tail length drive circadian cycles in protein synthesis. Genes and Development, 2012, 26, 2669-2672.	5.9	2
54	PARP-1 drives slumber: A reciprocal relationship between sleep homeostasis and DNA damage repair. Molecular Cell, 2021, 81, 4958-4959.	9.7	2

#	Article	IF	CITATIONS
55	Mammalian Circadian Cogwheels Are Parts of Macromolecular Machines. Molecular Cell, 2017, 67, 727-729.	9.7	1