Peter Lasch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/571116/publications.pdf

Version: 2024-02-01

95	6,593	42	79
papers	citations	h-index	g-index
110	110	110	7041 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Genome sequence data of Bacillus velezensis BP1.2A and BT2.4. Data in Brief, 2022, 41, 107978.	1.0	4
2	A robust metabolomics approach for the evaluation of human embryos from in vitro in vitro in fertilization. Analyst, The, 2021, 146, 6156-6169.	3. 5	7
3	Unbiased Antimicrobial Resistance Detection from Clinical Bacterial Isolates Using Proteomics. Analytical Chemistry, 2021, 93, 14599-14608.	6.5	6
4	Fusaricidins, Polymyxins and Volatiles Produced by Paenibacillus polymyxa Strains DSM 32871 and M1. Pathogens, 2021, 10, 1485.	2.8	14
5	Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries. Molecular and Cellular Proteomics, 2020, 19, 2125-2139.	3.8	24
6	Evaluation of MALDI-ToF Mass Spectrometry for Rapid Detection of Cereulide From Bacillus cereus Cultures. Frontiers in Microbiology, 2020, 11, 511674.	3. 5	14
7	Isolation Window Optimization of Data-Independent Acquisition Using Predicted Libraries for Deep and Accurate Proteome Profiling. Analytical Chemistry, 2020, 92, 12185-12192.	6. 5	27
8	Profiling for Bioactive Peptides and Volatiles of Plant Growth Promoting Strains of the Bacillus subtilis Complex of Industrial Relevance. Frontiers in Microbiology, 2020, 11, 1432.	3.5	22
9	Sample Preparation by Easy Extraction and Digestion (SPEED) - A Universal, Rapid, and Detergent-free Protocol for Proteomics Based on Acid Extraction. Molecular and Cellular Proteomics, 2020, 19, 209-222.	3.8	113
10	Draft Genome Sequences of 59 Endospore-Forming Gram-Positive Bacteria Associated with Crop Plants Grown in Vietnam. Microbiology Resource Announcements, 2020, 9, .	0.6	9
11	Coldâ€adapted <i>Bacilli</i> isolated from the Qinghai–Tibetan Plateau are able to promote plant growth in extreme environments. Environmental Microbiology, 2019, 21, 3505-3526.	3.8	42
12	Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 2019, 19, 145-157.	3.0	111
13	Two-Dimensional Correlation Spectroscopy (2D-COS) for Analysis of Spatially Resolved Vibrational Spectra. Applied Spectroscopy, 2019, 73, 359-379.	2.2	110
14	Genome Mining of the Lipopeptide Biosynthesis of <i>Paenibacillus polymyxa</i> E681 in Combination with Mass Spectrometry: Discovery of the Lipoheptapeptide Paenilipoheptin. ChemBioChem, 2018, 19, 744-753.	2.6	30
15	<scp>DMSO</scp> as a mobile phase additive enhances detection of ubiquitination sites by nanoâ€ <scp>LCâ€ESIâ€MS/MS</scp> . Journal of Mass Spectrometry, 2018, 53, 183-187.	1.6	4
16	Draft Genome Sequences of Plant-Associated Bacillus Strains Isolated from the Qinghai-Tibetan Plateau. Genome Announcements, 2018, 6, .	0.8	2
17	Preserving prion strain identity upon replication of prions in vitro using recombinant prion protein. Acta Neuropathologica Communications, 2018, 6, 92.	5.2	7
18	FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Analytical Chemistry, 2018, 90, 8896-8904.	6.5	78

#	Article	IF	CITATIONS
19	Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 14-20.	1.7	66
20	Sialylation Controls Prion Fate in Vivo. Journal of Biological Chemistry, 2017, 292, 2359-2368.	3.4	32
21	Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nature Communications, 2017, 8, 14402.	12.8	133
22	Two-Dimensional Correlation Spectroscopy for Multimodal Analysis of FT-IR, Raman, and MALDI-TOF MS Hyperspectral Images with Hamster Brain Tissue. Analytical Chemistry, 2017, 89, 5008-5016.	6.5	62
23	Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst, The, 2017, 142, 1342-1349.	3.5	13
24	Fusaricidins from <i>Paenibacillus polymyxa</i> Mâ€1, a family of lipohexapeptides of unusual complexityâ€"a mass spectrometric study. Journal of Mass Spectrometry, 2017, 52, 7-15.	1.6	30
25	Draft Genome Sequence of Burkholderia puraquae Type Strain CAMPA 1040, Isolated from Hospital Settings in $C\tilde{A}^3$ rdoba, Argentina. Genome Announcements, 2017, 5, .	0.8	6
26	Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the identification of highly pathogenic bacteria. TrAC - Trends in Analytical Chemistry, 2016, 85, 103-111.	11.4	25
27	Inactivation techniques for MALDI-TOF MS analysis of highly pathogenic bacteria – A critical review. TrAC - Trends in Analytical Chemistry, 2016, 85, 112-119.	11.4	10
28	Reversible off and on switching of prion infectivity via removing and reinstalling prion sialylation. Scientific Reports, 2016, 6, 33119.	3.3	27
29	Spectral Pathology: general discussion. Faraday Discussions, 2016, 187, 155-186.	3.2	5
30	Clinical Spectroscopy: general discussion. Faraday Discussions, 2016, 187, 429-460.	3.2	6
31	Discriminatory Power of MALDI-TOF Mass Spectrometry for Phylogenetically Closely Related Microbial Strains. , 2016, , 203-234.		1
32	Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila. Journal of Biological Chemistry, 2016, 291, 6471-6482.	3.4	30
33	Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy. Faraday Discussions, 2016, 187, 353-375.	3.2	29
34	Draft Genome Sequences of Klebsiella oxytoca Isolates Originating from a Highly Contaminated Liquid Hand Soap Product. Genome Announcements, 2015, 3, .	0.8	3
35	Spectropathology for the next generation: Quo vadis?. Analyst, The, 2015, 140, 2066-2073.	3.5	106
36	Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial. Journal of Clinical Microbiology, 2015, 53, 2632-2640.	3.9	71

#	Article	IF	CITATIONS
37	Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil. FEMS Microbiology Ecology, 2015, 91, fiv126.	2.7	10
38	Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols, 2014, 9, 1771-1791.	12.0	1,385
39	Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. Journal of Microbiological Methods, 2014, 100, 58-69.	1.6	98
40	Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research. Planetary and Space Science, 2014, 98, 191-197.	1.7	18
41	Amylocyclicin, a Novel Circular Bacteriocin Produced by Bacillus amyloliquefaciens FZB42. Journal of Bacteriology, 2014, 196, 1842-1852.	2.2	189
42	Minimising contributions from scattering in infrared spectra by means of an integrating sphere. Analyst, The, 2013, 138, 4191.	3.5	48
43	ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics, 2013, 14, 386.	2.8	47
44	Infrared Microspectroscopy Detects Protein Misfolding Cyclic Amplification (PMCA)-induced Conformational Alterations in Hamster Scrapie Progeny Seeds. Journal of Biological Chemistry, 2013, 288, 35068-35080.	3.4	14
45	Segmentation of Confocal Raman Microspectroscopic Imaging Data Using Edge-Preserving Denoising and Clustering. Analytical Chemistry, 2013, 85, 5676-5683.	6.5	9
46	First Report: Application of MALDI-TOF MS within an External Quality Assurance Exercise for the Discrimination of Highly Pathogenic Bacteria from Contaminant Flora. Applied Biosafety, 2012, 17, 59-63.	0.5	2
47	Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemometrics and Intelligent Laboratory Systems, 2012, 117, 100-114.	3.5	260
48	Characterization of Yersinia Using MALDI-TOF Mass Spectrometry and Chemometrics. Analytical Chemistry, 2010, 82, 8464-8475.	6.5	60
49	Multiplex Detection of Microbial and Plant Toxins by Immunoaffinity Enrichment and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2010, 82, 2916-2924.	6.5	70
50	Identification of <i>Bacillus anthracis</i> by Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Artificial Neural Networks. Applied and Environmental Microbiology, 2009, 75, 7229-7242.	3.1	120
51	Correction of axial chromatic aberrations in confocal Raman microspectroscopic measurements of a single microbial spore. Analyst, The, 2009, 134, 1162.	3.5	18
52	Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics. Analyst, The, 2009, 134, 1119.	3.5	59
53	Rapid identification of Burkholderia cepacia complex species including strains of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI-ToF mass spectrometry. Analyst, The, 2009, 134, 1138.	3.5	53
54	Phenotypic heterogeneity within microbial populations at the single-cell level investigated by confocal Raman microspectroscopy. Analyst, The, 2009, 134, 1149.	3.5	41

#	Article	IF	Citations
55	MALDI-TOF Mass Spectrometry Compatible Inactivation Method for Highly Pathogenic Microbial Cells and Spores. Analytical Chemistry, 2008, 80, 2026-2034.	6.5	120
56	Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology, 2007, 123, 305-319.	1.9	235
57	Detection of preclinical scrapie from serum by infrared spectroscopy and chemometrics. Analytical and Bioanalytical Chemistry, 2007, 387, 1791-1800.	3.7	30
58	Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 874-882.	2.6	111
59	FTIR-microspectroscopy of prion-infected nervous tissue. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 948-959.	2.6	77
60	Spatial resolution in infrared microspectroscopic imaging of tissues. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 814-829.	2.6	212
61	Cells and biofluids analyzed in aqueous environment by infrared spectroscopy. , 2006, , .		1
62	Artificial neural networks as supervised techniques for FT-IR microspectroscopic imaging. Journal of Chemometrics, 2006, 20, 209-220.	1.3	84
63	Early alterations in myocardia and vessels of the diabetic rat heart: an FTIR microspectroscopic study. Biochemical Journal, 2006, 397, 427-436.	3.7	96
64	Analysis of biofluids in aqueous environment based on mid-infrared spectroscopy. Journal of Biomedical Optics, 2005, 10, 031103.	2.6	44
65	Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy., 2004,,.		1
66	Scrapie-infected cells, isolated prions, and recombinant prion protein: A comparative study. Biopolymers, 2004, 74, 163-167.	2.4	19
67	Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources. Infrared Physics and Technology, 2004, 45, 331-338.	2.9	64
68	Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1688, 176-186.	3.8	346
69	Electric Field-Induced Changes in Lipids Investigated by Modulated Excitation FTIR Spectroscopy. Biophysical Journal, 2004, 86, 285-295.	0.5	17
70	Ante mortem identification of BSE from serum using infrared spectroscopy. , 2004, , .		1
71	FT-IR microspectroscopic imaging of prostate tissue sections. , 2004, 5321, 1.		9
72	Infrared microspectroscopic imaging of benign breast tumor tissue sections. Journal of Molecular Structure, 2003, 661-662, 411-417.	3.6	30

#	Article	IF	CITATIONS
73	Infrared spectroscopy of cultured cells. Vibrational Spectroscopy, 2003, 32, 107-115.	2.2	37
74	Antemortem Identification of Bovine Spongiform Encephalopathy from Serum Using Infrared Spectroscopy. Analytical Chemistry, 2003, 75, 6673-6678.	6.5	68
75	In situ identification of protein structural changes in prion-infected tissue. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 152-158.	3.8	72
76	Infrared Spectroscopy of Human Cells and Tissue: Detection of Disease. Technology in Cancer Research and Treatment, 2002, $1,1$ -7.	1.9	51
77	<title>In-situ spectroscopic investigation of transmissible spongiform encephalopathies: application of Fourier-transform infrared spectroscopy to a scrapie-hamster model</title> ., 2002, , .		0
78	Identification of Scrapie Infection from Blood Serum by Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 2002, 74, 3865-3868.	6.5	71
79	Characterization of Colorectal Adenocarcinoma Sections by Spatially Resolved FT-IR Microspectroscopy. Applied Spectroscopy, 2002, 56, 1-9.	2.2	97
80	Molecular Changes of Preclinical Scrapie Can Be Detected by Infrared Spectroscopy. Journal of Neuroscience, 2002, 22, 2989-2997.	3.6	70
81	Mid-IR microspectroscopic imaging of breast tumor tissue sections. Biopolymers, 2002, 67, 354-357.	2.4	46
82	Spatially resolved IR microspectroscopy of single cells. Biopolymers, 2002, 67, 335-338.	2.4	121
83	IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers, 2002, 67, 349-353.	2.4	82
84	FT-IR spectroscopic investigations of single cells on the subcellular level. Vibrational Spectroscopy, 2002, 28, 147-157.	2.2	176
85	<title>FT-IR spectroscopic imaging of tissue thin sections</title> ., 2001, 4432, 10.		1
86	Hydrogen Peroxide-induced Structural Alterations of RNase A. Journal of Biological Chemistry, 2001, 276, 9492-9502.	3.4	90
87	Detection of pathological molecular alterations in scrapie-infected hamster brain by Fourier transform infrared (FT-IR) spectroscopy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1501, 189-199.	3.8	103
88	Infrared imaging: An emerging tool for tissue diagnostics?. , 1999, , 509-510.		0
89	The Influence of Poly-(I-Lysine) and Porin on the Domain Structure of Mixed Vesicles Composed of Lipopolysaccharide and Phospholipid: An Infrared Spectroscopic Study. Biophysical Journal, 1998, 75, 840-852.	0.5	27
90	<title>Imaging of human colon carcinoma thin sections by FT-IR microspectrometry</title> ., 1998, 3257, 187.		13

#	Article	IF	CITATIONS
91	<title>IR spectroscopy and IR microscopy of human breast tumors, xenografted breast tumors, and breast tumor cell lines</title> ., 1998, 3257, 13.		11
92	FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques. Cellular and Molecular Biology, 1998, 44, 189-202.	0.9	102
93	<title>FTIR microspectroscopic imaging of human carcinoma thin tissue sections</title> ., 1997, , .		2
94	Infrared Spectroscopy of Biofluids in Clinical Chemistry and Medical Diagnostics., 0,, 79-103.		4
95	Biomedical Applications of Infrared Microspectroscopy and Imaging by Various Means. , 0, , 39-78.		3