Yue Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5710612/publications.pdf

Version: 2024-02-01

31	1,165	304743	414414
papers	citations	h-index	g-index
34	34	34	1737
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel Potent EGFR-JAK3 Dual-Target Inhibitor that Overcomes KRAS Mutation Resistance in Colorectal Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 440-449.	1.7	2
2	Azoleâ€Directed Cobaltâ€Catalyzed Asymmetric Hydrogenation of Alkenes. Chemistry - A European Journal, 2022, 28, .	3.3	12
3	Rosmarinic acid exerts an antagonistic effect on nonalcoholic fatty liver disease by regulating the <scp>YAP1</scp> / <scp>TAZâ€PPARγ</scp> / <scp>PGC</scp> â€Îα signaling pathway. Phytotherapy Research, 2021, 35, 1010-1022.	5.8	17
4	Phosphocreatine Promotes Osteoblastic Activities in H2O2-Induced MC3T3-E1 Cells by Regulating SIRT1/FOXO1/PGC-1α Signaling Pathway. Current Pharmaceutical Biotechnology, 2021, 22, 609-621.	1.6	9
5	Design, synthesis, and biological evaluation of cyano-substituted 2,4-diarylaminopyrimidines as potent JAK3 inhibitors for the treatment of B-cell lymphoma. Bioorganic Chemistry, 2021, 116, 105330.	4.1	7
6	CoenzymeQ10-Induced Activation of AMPK-YAP-OPA1 Pathway Alleviates Atherosclerosis by Improving Mitochondrial Function, Inhibiting Oxidative Stress and Promoting Energy Metabolism. Frontiers in Pharmacology, 2020, 11, 1034.	3 . 5	41
7	A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Frontiers in Pharmacology, 2020, 11, 153.	3.5	163
8	Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging, 2020, 12, 2049-2069.	3.1	28
9	Disocin prevents postmenopausal atherosclerosis in ovariectomized LDLR-/- mice through a PGC-1α/ERα pathway leading to promotion of autophagy and inhibition of oxidative stress, inflammation and apoptosis. Pharmacological Research, 2019, 148, 104414.	7.1	46
10	MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacological Research, 2019, 146, 104276.	7.1	69
11	Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo–FOXO3A and PI3K/AKT signaling pathways. Journal of Cellular Physiology, 2019, 234, 18131-18145.	4.1	40
12	Rosmarinic acid exerts an antagonistic effect on vascular calcification by regulating the Nrf2 signalling pathway. Free Radical Research, 2019, 53, 187-197.	3.3	24
13	Luteolin attenuates glucocorticoidâ€induced osteoporosis by regulatingÂERK/Lrpâ€5/GSKâ€3β signaling pathway in vivo and in vitro. Journal of Cellular Physiology, 2019, 234, 4472-4490.	4.1	57
14	Catalpol Inhibits Homocysteine-induced Oxidation and Inflammation via Inhibiting Nox4/NF-κB and GRP78/PERK Pathways in Human Aorta Endothelial Cells. Inflammation, 2019, 42, 64-80.	3.8	66
15	Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Free Radical Research, 2018, 52, 198-211.	3.3	44
16	Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research, 2018, 130, 466-480.	7.1	146
17	Activating the PGC- $1 < i > \hat{l} \pm < /i > / TERT$ Pathway by Catalpol Ameliorates Atherosclerosis via Modulating ROS Production, DNA Damage, and Telomere Function: Implications on Mitochondria and Telomere Link. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	45
18	Catalpol prevents alteration of cholesterol homeostasis in non-alcoholic fatty liver disease viaÂattenuating endoplasmic reticulum stress and NOX4 over-expression. RSC Advances, 2017, 7, 1161-1176.	3.6	4

#	Article	IF	CITATIONS
19	The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways. Scientific Reports, 2017, 7, 3331.	3.3	23
20	Catalpol attenuates oxidative stress and promotes autophagy in TNF- \hat{l}_{\pm} -exposed HAECs by up-regulating AMPK. RSC Advances, 2017, 7, 52561-52572.	3.6	5
21	Novel Selective and Potent EGFR Inhibitor that Overcomes T790M-Mediated Resistance in Non-Small Cell Lung Cancer. Molecules, 2016, 21, 1462.	3.8	12
22	Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5505-5512.	3.0	24
23	Discovery of Novel Bruton's Tyrosine Kinase (BTK) Inhibitors Bearing a <i>N</i> ,9-Diphenyl-9 <i>H</i> -purin-2-amine Scaffold. ACS Medicinal Chemistry Letters, 2016, 7, 1050-1055.	2.8	24
24	Alpha-lipoic acid defends homocysteine-induced endoplasmic reticulum and oxidative stress in HAECs. Biomedicine and Pharmacotherapy, 2016, 80, 63-72.	5.6	27
25	Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines. European Journal of Medicinal Chemistry, 2016, 110, 195-203.	5 . 5	24
26	Potent anti-inflammatory effect of dioscin mediated by suppression ofÂTNF-α-induced VCAM-1, ICAM-1and EL expression via the NF-κB pathway. Biochimie, 2015, 110, 62-72.	2.6	61
27	Alphaâ€Lipoic Acid Promotes Osteoblastic Formation in H ₂ O ₂ â€Treated MC3T3â€E1 Cells and Prevents Bone Loss in Ovariectomized Rats. Journal of Cellular Physiology, 2015, 230, 2184-2201.	4.1	36
28	\hat{l}_{\pm} -Lipoic acid protects HAECs from high glucose-induced apoptosis via decreased oxidative stress, ER stress and mitochondrial injury. RSC Advances, 2015, 5, 70726-70736.	3.6	0
29	Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS–NF-κB signal pathway. Toxicology Letters, 2015, 232, 149-158.	0.8	46
30	Naringin Inhibits TNF-& Description of the Noval Naringin Inhibits TNF-& Description of the Noval Nova	1.6	35
31	Mycobacterium tuberculosisâ€fRv1302 and Mycobacterium smegmatis MSMEG4947 have WecA function and MSMEG4947 is required for the growth of M. smegmatis. FEMS Microbiology Letters, 2010, 310, 54-61.	1.8	25