Yue Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5710612/publications.pdf

Version: 2024-02-01

31	1,165	304743	414414
papers	citations	h-index	g-index
34	34	34	1737
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Review of the Anti-Inflammatory Effects of Rosmarinic Acid on Inflammatory Diseases. Frontiers in Pharmacology, 2020, 11, 153.	3.5	163
2	Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research, 2018, 130, 466-480.	7.1	146
3	MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacological Research, 2019, 146, 104276.	7.1	69
4	Catalpol Inhibits Homocysteine-induced Oxidation and Inflammation via Inhibiting Nox4/NF-κB and GRP78/PERK Pathways in Human Aorta Endothelial Cells. Inflammation, 2019, 42, 64-80.	3.8	66
5	Potent anti-inflammatory effect of dioscin mediated by suppression ofÂTNF-α-induced VCAM-1, ICAM-1and EL expression via the NF-ήB pathway. Biochimie, 2015, 110, 62-72.	2.6	61
6	Luteolin attenuates glucocorticoidâ€induced osteoporosis by regulatingÂERK/Lrpâ€5/GSKâ€3β signaling pathway in vivo and in vitro. Journal of Cellular Physiology, 2019, 234, 4472-4490.	4.1	57
7	Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS–NF-κB signal pathway. Toxicology Letters, 2015, 232, 149-158.	0.8	46
8	Disocin prevents postmenopausal atherosclerosis in ovariectomized LDLR-/- mice through a PGC-1α/ERα pathway leading to promotion of autophagy and inhibition of oxidative stress, inflammation and apoptosis. Pharmacological Research, 2019, 148, 104414.	7.1	46
9	Activating the PGC- $1 < i > \hat{l} \pm < /i > / TERT$ Pathway by Catalpol Ameliorates Atherosclerosis via Modulating ROS Production, DNA Damage, and Telomere Function: Implications on Mitochondria and Telomere Link. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	45
10	Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Free Radical Research, 2018, 52, 198-211.	3.3	44
11	CoenzymeQ10-Induced Activation of AMPK-YAP-OPA1 Pathway Alleviates Atherosclerosis by Improving Mitochondrial Function, Inhibiting Oxidative Stress and Promoting Energy Metabolism. Frontiers in Pharmacology, 2020, 11, 1034.	3.5	41
12	Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo–FOXO3A and PI3K/AKT signaling pathways. Journal of Cellular Physiology, 2019, 234, 18131-18145.	4.1	40
13	Alphaâ€Lipoic Acid Promotes Osteoblastic Formation in H ₂ O ₂ â€Treated MC3T3â€E1 Cells and Prevents Bone Loss in Ovariectomized Rats. Journal of Cellular Physiology, 2015, 230, 2184-2201.	4.1	36
14	Naringin Inhibits TNF-& Dyseption (1975) and Plathy Pathways. Current Pharmaceutical Biotechnology, 2014, 15, 1173-1182.	1.6	35
15	Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade. Aging, 2020, 12, 2049-2069.	3.1	28
16	Alpha-lipoic acid defends homocysteine-induced endoplasmic reticulum and oxidative stress in HAECs. Biomedicine and Pharmacotherapy, 2016, 80, 63-72.	5.6	27
17	Mycobacterium tuberculosisâ€fRv1302 and Mycobacterium smegmatis MSMEG4947 have WecA function and MSMEG4947 is required for the growth of M. smegmatis. FEMS Microbiology Letters, 2010, 310, 54-61.	1.8	25
18	Synthesis and biological evaluation of azole-diphenylpyrimidine derivatives (AzDPPYs) as potent T790M mutant form of epidermal growth factor receptor inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 5505-5512.	3.0	24

#	Article	IF	CITATIONS
19	Discovery of Novel Bruton's Tyrosine Kinase (BTK) Inhibitors Bearing a <i>N</i> ,9-Diphenyl-9 <i>H</i> -purin-2-amine Scaffold. ACS Medicinal Chemistry Letters, 2016, 7, 1050-1055.	2.8	24
20	Novel 4-anilinoquinazoline derivatives featuring an 1-adamantyl moiety as potent EGFR inhibitors with enhanced activity against NSCLC cell lines. European Journal of Medicinal Chemistry, 2016, 110, 195-203.	5.5	24
21	Rosmarinic acid exerts an antagonistic effect on vascular calcification by regulating the Nrf2 signalling pathway. Free Radical Research, 2019, 53, 187-197.	3.3	24
22	The osteogenesis-promoting effects of alpha-lipoic acid against glucocorticoid-induced osteoporosis through the NOX4, NF-kappaB, JNK and PI3K/AKT pathways. Scientific Reports, 2017, 7, 3331.	3.3	23
23	Rosmarinic acid exerts an antagonistic effect on nonalcoholic fatty liver disease by regulating the <scp>YAP1</scp> / <scp>TAZâ€PPARγ</scp> / <scp>PGC</scp> â€Îα signaling pathway. Phytotherapy Research, 2021, 35, 1010-1022.	5.8	17
24	Novel Selective and Potent EGFR Inhibitor that Overcomes T790M-Mediated Resistance in Non-Small Cell Lung Cancer. Molecules, 2016, 21, 1462.	3.8	12
25	Azoleâ€Directed Cobaltâ€Catalyzed Asymmetric Hydrogenation of Alkenes. Chemistry - A European Journal, 2022, 28, .	3.3	12
26	Phosphocreatine Promotes Osteoblastic Activities in H2O2-Induced MC3T3-E1 Cells by Regulating SIRT1/FOXO1/PGC-1α Signaling Pathway. Current Pharmaceutical Biotechnology, 2021, 22, 609-621.	1.6	9
27	Design, synthesis, and biological evaluation of cyano-substituted 2,4-diarylaminopyrimidines as potent JAK3 inhibitors for the treatment of B-cell lymphoma. Bioorganic Chemistry, 2021, 116, 105330.	4.1	7
28	Catalpol attenuates oxidative stress and promotes autophagy in TNF-α-exposed HAECs by up-regulating AMPK. RSC Advances, 2017, 7, 52561-52572.	3.6	5
29	Catalpol prevents alteration of cholesterol homeostasis in non-alcoholic fatty liver disease viaÂattenuating endoplasmic reticulum stress and NOX4 over-expression. RSC Advances, 2017, 7, 1161-1176.	3.6	4
30	Novel Potent EGFR-JAK3 Dual-Target Inhibitor that Overcomes KRAS Mutation Resistance in Colorectal Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 440-449.	1.7	2
31	\hat{l}_{\pm} -Lipoic acid protects HAECs from high glucose-induced apoptosis via decreased oxidative stress, ER stress and mitochondrial injury. RSC Advances, 2015, 5, 70726-70736.	3.6	O