Elizabeth S Spelke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5710022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early concepts of intimacy: Young humans use saliva sharing to infer close relationships. Science, 2022, 375, 311-315.	12.6	19
2	Using machine learning to understand age and gender classification based on infant temperament. PLoS ONE, 2022, 17, e0266026.	2.5	1
3	What Could Go Wrong: Adults and Children Calibrate Predictions and Explanations of Others' Actions Based on Relative Reward and Danger. Cognitive Science, 2022, 46, .	1.7	2
4	Visual foundations of Euclidean geometry. Cognitive Psychology, 2022, 136, 101494.	2.2	4
5	The ability to predict actions of others from distributed cues is still developing in 6- to 8-year-old children. Journal of Vision, 2021, 21, 14.	0.3	0
6	Across demographics and recent history, most parents sing to their infants and toddlers daily. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210089.	4.0	14
7	Testing the role of symbols in preschool numeracy: An experimental computer-based intervention study. PLoS ONE, 2021, 16, e0259775.	2.5	4
8	Learning from multiple informants: Children's response to epistemic bases for consensus judgments. Journal of Experimental Child Psychology, 2020, 192, 104759.	1.4	6
9	Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences, 2020, 24, 675-678.	7.8	53
10	Infants' sensitivity to shape changes in 2D visual forms. Infancy, 2020, 25, 618-639.	1.6	10
11	Origins of the concepts cause, cost, and goal in prereaching infants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17747-17752.	7.1	38
12	Language, gesture, and judgment: Children's paths to abstract geometry. Journal of Experimental Child Psychology, 2019, 177, 70-85.	1.4	12
13	Children use targets' facial appearance to guide and predict social behavior Developmental Psychology, 2019, 55, 1400-1413.	1.6	23
14	Shared musical knowledge in 11â€monthâ€old infants. Developmental Science, 2018, 21, e12542.	2.4	20
15	Places in the Brain: Bridging Layout and Object Geometry in Scene-Selective Cortex. Cerebral Cortex, 2018, 28, 2365-2374.	2.9	31
16	Human infants' understanding of social imitation: Inferences of affiliation from third party observations. Cognition, 2018, 170, 31-48.	2.2	61
17	The statistical shape of geometric reasoning. Scientific Reports, 2018, 8, 12906.	3.3	6
18	Third-Party Preferences for Imitators in Preverbal Infants. Open Mind, 2018, 2, 61-71.	1.7	23

#	Article	IF	CITATIONS
19	The aesthetic preference for symmetry dissociates from early-emerging attention to symmetry. Scientific Reports, 2018, 8, 6263.	3.3	22
20	At 4.5 but not 5.5 years, children favor kin when the stakes are moderately high. PLoS ONE, 2018, 13, e0202507.	2.5	5
21	From map reading to geometric intuitions Developmental Psychology, 2018, 54, 1304-1316.	1.6	11
22	Core Knowledge, Language, and Number. Language Learning and Development, 2017, 13, 147-170.	1.4	50
23	The cradle of social knowledge: Infants' reasoning about caregiving and affiliation. Cognition, 2017, 159, 102-116.	2.2	27
24	Six-month-old infants expect agents to minimize the cost of their actions. Cognition, 2017, 160, 35-42.	2.2	51
25	Cognitive science in the field: A preschool intervention durably enhances intuitive but not formal mathematics. Science, 2017, 357, 47-55.	12.6	66
26	Ten-month-old infants infer the value of goals from the costs of actions. Science, 2017, 358, 1038-1041.	12.6	111
27	Mind Games: Game Engines as an Architecture for Intuitive Physics. Trends in Cognitive Sciences, 2017, 21, 649-665.	7.8	112
28	Young Children's Use of Surface and Object Information in Drawings of Everyday Scenes. Child Development, 2017, 88, 1701-1715.	3.0	2
29	Mastery of the logic of natural numbers is not the result of mastery of counting: evidence from late counters. Developmental Science, 2017, 20, e12459.	2.4	15
30	Intelligent machines and human minds. Behavioral and Brain Sciences, 2017, 40, e277.	0.7	0
31	Children can predict actions from subtle preparatory movements, but not as well as adults. Journal of Vision, 2017, 17, 51.	0.3	Ο
32	Children's Expectations and Understanding of Kinship as a Social Category. Frontiers in Psychology, 2016, 7, 440.	2.1	22
33	Shared cultural knowledge: Effects of music on young children's social preferences. Cognition, 2016, 148, 106-116.	2.2	43
34	For 5-Month-Old Infants, Melodies Are Social. Psychological Science, 2016, 27, 486-501.	3.3	106
35	Non-symbolic division in childhood. Journal of Experimental Child Psychology, 2016, 142, 66-82.	1.4	23
36	Effects of Non-Symbolic Approximate Number Practice on Symbolic Numerical Abilities in Pakistani Children. PLoS ONE, 2016, 11, e0164436.	2.5	32

#	Article	IF	CITATIONS
37	Children's expectations about training the approximate number system. British Journal of Developmental Psychology, 2015, 33, 411-418.	1.7	11
38	Effects of early institutionalization on the development of emotion processing: a case for <i>relative</i> sparing?. Developmental Science, 2015, 18, 298-313.	2.4	24
39	Core geometry in perspective. Developmental Science, 2015, 18, 894-908.	2.4	10
40	Goal attributions and instrumental helping at 14 and 24 months of age. Cognition, 2015, 142, 44-59.	2.2	17
41	In the name of God: How children and adults judge agents who act for religious versus secular reasons. Cognition, 2015, 144, 134-149.	2.2	16
42	Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Developmental Science, 2015, 18, 972-978.	2.4	23
43	Core Knowledge and the Emergence of Symbols: The Case of Maps. Journal of Cognition and Development, 2015, 16, 81-96.	1.3	12
44	Differential representation of length and angle information across scene-selective cortex. Journal of Vision, 2015, 15, 519.	0.3	0
45	The Formation of Belief-Based Social Preferences. Social Cognition, 2014, 32, 22-47.	0.9	18
46	Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4809-4813.	7.1	241
47	Dissociation between small and large numerosities in newborn infants. Developmental Science, 2014, 17, 11-22.	2.4	60
48	Reading Angles in Maps. Child Development, 2014, 85, 237-249.	3.0	11
49	Toward exact number: Young children use one-to-one correspondence to measure set identity but not numerical equality. Cognitive Psychology, 2014, 72, 27-53.	2.2	45
50	What do different beliefs tell us? An examination of factual, opinion-based, and religious beliefs. Cognitive Development, 2014, 30, 15-29.	1.3	31
51	Preverbal infants identify emotional reactions that are incongruent with goal outcomes. Cognition, 2014, 130, 204-216.	2.2	85
52	Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 2014, 131, 92-107.	2.2	223
53	The development of reasoning about beliefs: Fact, preference, and ideology. Journal of Experimental Social Psychology, 2013, 49, 559-565.	2.2	86
54	Preverbal infants expect members of social groups to act alike. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3965-72.	7.1	165

#	Article	IF	CITATIONS
55	First-person action experience reveals sensitivity to action efficiency in prereaching infants. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18728-18733.	7.1	79
56	Generating a lexicon without a language model: Do words for number count?. Journal of Memory and Language, 2013, 69, 496-505.	2.1	22
57	Navigation by environmental geometry: The use of zebrafish as a model. Journal of Experimental Biology, 2013, 216, 3693-9.	1.7	43
58	Twoâ€yearâ€old children interpret abstract, purely geometric maps. Developmental Science, 2013, 16, 365-376.	2.4	21
59	Nonâ€symbolic halving in an Amazonian indigene group. Developmental Science, 2013, 16, 451-462.	2.4	26
60	What Exactly do Numbers Mean?. Language Learning and Development, 2013, 9, 105-129.	1.4	114
61	Melting Lizards and Crying Mailboxes: Children's Preferential Recall of Minimally Counterintuitive Concepts. Cognitive Science, 2013, 37, 1251-1289.	1.7	59
62	Patterns of implicit and explicit attitudes in children and adults: Tests in the domain of religion Journal of Experimental Psychology: General, 2013, 142, 864-879.	2.1	49
63	Two Randomized Trials Provide No Consistent Evidence for Nonmusical Cognitive Benefits of Brief Preschool Music Enrichment. PLoS ONE, 2013, 8, e82007.	2.5	87
64	Core foundations of abstract geometry. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14191-14195.	7.1	57
65	Children's Use of Social Categories in Thinking About People and Social Relationships. Journal of Cognition and Development, 2013, 14, 35-62.	1.3	143
66	The Role of Forgetting in Undermining Good Intentions. PLoS ONE, 2013, 8, e79091.	2.5	5
67	Not All Continuous Dimensions Map Equally: Number-Brightness Mapping in Human Infants. PLoS ONE, 2013, 8, e81241.	2.5	18
68	Chicks, like children, spontaneously reorient by three-dimensional environmental geometry, not by image matching. Biology Letters, 2012, 8, 492-494.	2.3	54
69	â€~Native' Objects and Collaborators: Infants' Object Choices and Acts of Giving Reflect Favor for Native Over Foreign Speakers. Journal of Cognition and Development, 2012, 13, 67-81.	1.3	68
70	Language-based Social Preferences among Children in South Africa. Language Learning and Development, 2012, 8, 215-232.	1.4	39
71	Core systems of geometry in animal minds. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2784-2793.	4.0	59
72	Spontaneous Reorientation Is Guided by Perceived Surface Distance, Not by Image Matching Or Comparison. PLoS ONE, 2012, 7, e51373.	2.5	24

#	Article	IF	CITATIONS
73	Spatiotemporal dynamics of processing nonsymbolic number: An eventâ€related potential source localization study. Human Brain Mapping, 2012, 33, 2189-2203.	3.6	58
74	Navigation as a source of geometric knowledge: Young children's use of length, angle, distance, and direction in a reorientation task. Cognition, 2012, 123, 144-161.	2.2	84
75	Infants' Developing Understanding of Social Gaze. Child Development, 2012, 83, 486-496.	3.0	74
76	Cross-Dimensional Mapping of Number, Length and Brightness by Preschool Children. PLoS ONE, 2012, 7, e35530.	2.5	34
77	Kindergarten children's sensitivity to geometry in maps. Developmental Science, 2011, 14, 809-821.	2.4	30
78	Natural Number and Natural Geometry. , 2011, , 287-317.		38
79	Neural signatures of number processing in human infants: evidence for two core systems underlying numerical cognition. Developmental Science, 2011, 14, 360-371.	2.4	125
80	Race preferences in children: insights from South Africa. Developmental Science, 2011, 14, 1283-1291.	2.4	93
81	Spatial and numerical abilities without a complete natural language. Neuropsychologia, 2011, 49, 924-936.	1.6	25
82	The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery. Cognition, 2011, 120, 322-330.	2.2	504
83	Do infants show social preferences for people differing in race?. Cognition, 2011, 119, 1-9.	2.2	172
84	Cognitive effects of language on human navigation. Cognition, 2011, 120, 186-201.	2.2	133
85	Young children reorient by computing layout geometry, not by matching images of the environment. Psychonomic Bulletin and Review, 2011, 18, 192-198.	2.8	70
86	Mirror-Image Sensitivity and Invariance in Object and Scene Processing Pathways. Journal of Neuroscience, 2011, 31, 11305-11312.	3.6	144
87	Quinian bootstrapping or Fodorian combination? Core and constructed knowledge of number. Behavioral and Brain Sciences, 2011, 34, 149-150.	0.7	13
88	Flexible intuitions of Euclidean geometry in an Amazonian indigene group. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9782-9787.	7.1	75
89	Number without a language model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3163-3168.	7.1	161
90	Children's Responses to Group-Based Inequalities: Perpetuation and Rectification. Social Cognition, 2011, 29, 270-287.	0.9	92

#	Article	IF	CITATIONS
91	Geometry as a Universal Mental Construction. , 2011, , 319-332.		22
92	Social categories guide young children's preferences for novel objects. Developmental Science, 2010, 13, 599-610.	2.4	170
93	Two systems of spatial representation underlying navigation. Experimental Brain Research, 2010, 206, 179-188.	1.5	82
94	Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 2010, 115, 394-406.	2.2	264
95	Core multiplication in childhood. Cognition, 2010, 116, 204-216.	2.2	88
96	A modular geometric mechanism for reorientation in children. Cognitive Psychology, 2010, 61, 152-176.	2.2	79
97	Beyond Core Knowledge: Natural Geometry. Cognitive Science, 2010, 34, 863-884.	1.7	164
98	Number-Space Mapping in Human Infants. Psychological Science, 2010, 21, 653-660.	3.3	247
99	Evidence from an emerging sign language reveals that language supports spatial cognition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12116-12120.	7.1	142
100	Social Information Guides Infants' Selection of Foods. Journal of Cognition and Development, 2009, 10, 1-17.	1.3	208
101	Accent Trumps Race in Guiding Children's Social Preferences. Social Cognition, 2009, 27, 623-634.	0.9	441
102	All Numbers Are Not Equal: An Electrophysiological Investigation of Small and Large Number Representations. Journal of Cognitive Neuroscience, 2009, 21, 1039-1053.	2.3	137
103	Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10382-10385.	7.1	625
104	Spontaneous mapping of number and space in adults and young children. Cognition, 2009, 110, 198-207.	2.2	182
105	Core knowledge and its limits: The domain of food. Cognition, 2009, 112, 120-140.	2.2	37
106	What can developmental and comparative cognitive neuroscience tell us about the adult human brain?. Current Opinion in Neurobiology, 2009, 19, 1-5.	4.2	79
107	Reaching and grasping a moving object in 6-, 8-, and 10-month-old infants: Laterality and performance. , 2009, 32, 137-146.		43
108	Occlusion Is Hard: Comparing Predictive Reaching for Visible and Hidden Objects in Infants and Adults. Cognitive Science, 2009, 33, 1483-1502.	1.7	27

#	Article	IF	CITATIONS
109	Young Children's Representations of Spatial and Functional Relations Between Objects. Child Development, 2009, 80, 1612-1627.	3.0	30
110	Innateness, Learning, and Rationality. Child Development Perspectives, 2009, 3, 96-98.	3.9	34
111	Children's multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 2009, 103, 441-454.	1.4	49
112	Development of Sensitivity to Geometry in Visual Forms. Human Evolution, 2009, 23, 213-248.	2.0	41
113	Young children's spontaneous use of geometry in maps. Developmental Science, 2008, 11, F1-F7.	2.4	58
114	Children's use of geometry for reorientation. Developmental Science, 2008, 11, 743-749.	2.4	77
115	Foundations of cooperation in young children. Cognition, 2008, 108, 222-231.	2.2	464
116	Children's understanding of the relationship between addition and subtraction. Cognition, 2008, 107, 932-945.	2.2	37
117	Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures. Science, 2008, 320, 1217-1220.	12.6	503
118	Exact Equality and Successor Function: Two Key Concepts on the Path towards Understanding Exact Numbers. Philosophical Psychology, 2008, 21, 491-505.	0.9	73
119	Judgments of the lucky across development and culture Journal of Personality and Social Psychology, 2008, 94, 757-776.	2.8	54
120	Nonsymbolic, approximate arithmetic in children: Abstract addition prior to instruction Developmental Psychology, 2008, 44, 1466-1477.	1.6	73
121	The development of language and abstract concepts: The case of natural number Journal of Experimental Psychology: General, 2008, 137, 22-38.	2.1	221
122	La théorie du « Core Knowledge ». Annee Psychologique, 2008, 108, 721.	0.3	4
123	ACCENT OVER RACE: THE ROLE OF LANGUAGE IN GUIDING CHILDREN'S EARLY SOCIAL PREFERENCES. , 2008, , .		0
124	The native language of social cognition. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12577-12580.	7.1	680
125	Core systems in human cognition. Progress in Brain Research, 2007, 164, 257-264.	1.4	92
126	Symbolic arithmetic knowledge without instruction. Nature, 2007, 447, 589-591.	27.8	281

#	Article	IF	CITATIONS
127	Core knowledge. Developmental Science, 2007, 10, 89-96.	2.4	1,120
128	Will any doll do? 12-month-olds' reasoning about goal objects. Cognitive Psychology, 2007, 54, 133-154.	2.2	27
129	rTMS over the intraparietal sulcus disrupts numerosity processing. Experimental Brain Research, 2007, 179, 631-642.	1.5	133
130	Infants' Rapid Learning About Self-Propelled Objects. Infancy, 2006, 9, 45-71.	1.6	34
131	Object boundaries influence toddlers' performance in a search task. Developmental Science, 2006, 9, 97-107.	2.4	14
132	Non-symbolic arithmetic in adults and young children. Cognition, 2006, 98, 199-222.	2.2	326
133	Preschool children master the logic of number word meanings. Cognition, 2006, 98, B57-B66.	2.2	54
134	Core Knowledge of Geometry in an Amazonian Indigene Group. Science, 2006, 311, 381-384.	12.6	294
135	Preschool Children's Mapping of Number Words to Nonsymbolic Numerosities. Child Development, 2005, 76, 978-988.	3.0	154
136	Number sense in human infants. Developmental Science, 2005, 8, 88-101.	2.4	482
137	Infants' enumeration of actions: numerical discrimination and its signature limits. Developmental Science, 2005, 8, 173-181.	2.4	170
138	Chronometric studies of numerical cognition in five-month-old infants. Cognition, 2005, 97, 23-39.	2.2	81
139	Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14116-14121.	7.1	329
140	Sex Differences in Intrinsic Aptitude for Mathematics and Science?: A Critical Review American Psychologist, 2005, 60, 950-958.	4.2	548
141	Straddling the perception-conception boundary. Developmental Science, 2004, 7, 507-511.	2.4	8
142	Conceptual precursors to language. Nature, 2004, 430, 453-456.	27.8	363
143	Discrimination of Large and Small Numerosities by Human Infants. Infancy, 2004, 5, 271-290.	1.6	165
144	The Animate-Inanimate Distinction in Infancy: Developing Sensitivity to Constraints on Human Actions. Journal of Cognition and Development, 2004, 5, 399-426.	1.3	32

#	Article	IF	CITATIONS
145	Core systems of number. Trends in Cognitive Sciences, 2004, 8, 307-314.	7.8	2,167
146	The construction of large number representations in adults. Cognition, 2003, 86, 201-221.	2.2	468
147	Motion and edge sensitivity in perception of object unity. Cognitive Psychology, 2003, 46, 31-64.	2.2	35
148	Approximate quantities and exact number words: dissociable systems. Neuropsychologia, 2003, 41, 1942-1958.	1.6	303
149	Human spatial representation: insights from animals. Trends in Cognitive Sciences, 2002, 6, 376-382.	7.8	531
150	Infants' ability to connect gaze and emotional expression to intentional action. Cognition, 2002, 85, 53-78.	2.2	358
151	Developmental neuroimaging: a developmental psychologist looks ahead. Developmental Science, 2002, 5, 392-396.	2.4	18
152	Infants' Discrimination of Number vs. Continuous Extent. Cognitive Psychology, 2002, 44, 33-66.	2.2	458
153	Predictive Reaching for Occluded Objects by 6-Month-Old Infants. Journal of Cognition and Development, 2001, 2, 261-281.	1.3	34
154	Language and number: a bilingual training study. Cognition, 2001, 78, 45-88.	2.2	323
155	Children's use of geometry and landmarks to reorient in an open space. Cognition, 2001, 81, 119-148.	2.2	136
156	Recognition and categorization of biologically significant objects by rhesus monkeys (Macaca) Tj ETQq0 0 0 rgB	T /Qverloc	:k 10 Tf 50 30
157	Visual Representation in the Wild: How Rhesus Monkeys Parse Objects. Journal of Cognitive Neuroscience, 2001, 13, 44-58.	2.3	55
158	Object representation and predictive action in infancy. Developmental Science, 2000, 3, 193-205.	2.4	34
159	Updating egocentric representations in human navigation. Cognition, 2000, 77, 215-250.	2.2	355
160	Large number discrimination in 6-month-old infants. Cognition, 2000, 74, B1-B11.	2.2	1,181
161	Perception and understanding of effects of gravity and inertia on object motion. Developmental Science, 1999, 2, 339-362.	2.4	126
162	Sources of Flexibility in Human Cognition: Dual-Task Studies of Space and Language. Cognitive Psychology, 1999, 39, 3-36.	2.2	522

#	Article	IF	CITATIONS
163	Synchronous change and perception of object unity: evidence from adults and infants. Cognition, 1999, 71, 257-288.	2.2	48
164	Infant sensitivity to shadow motions. Cognitive Development, 1998, 13, 387-419.	1.3	16
165	Science and Core Knowledge. Philosophy of Science, 1996, 63, 515-533.	1.0	245
166	Modularity and development: the case of spatial reorientation. Cognition, 1996, 61, 195-232.	2.2	530
167	Spatiotemporal continuity, smoothness of motion and object identity in infancy. British Journal of Developmental Psychology, 1995, 13, 113-142.	1.7	300
168	The role of three-dimensional depth cues in infants' perception of partly occluded objects. Infant and Child Development, 1994, 3, 187-191.	0.4	33
169	A geometric process for spatial reorientation in young children. Nature, 1994, 370, 57-59.	27.8	628
170	Early knowledge of object motion: continuity and inertia. Cognition, 1994, 51, 131-176.	2.2	220
171	Initial knowledge: six suggestions. Cognition, 1994, 50, 431-445.	2.2	755
172	Modality-specific and amodal aspects of object perception in infancy: The case of active touch. Cognition, 1993, 47, 251-279.	2.2	52
173	Gestalt Relations and Object Perception: A Developmental Study. Perception, 1993, 22, 1483-1501.	1.2	86
174	Origins of knowledge Psychological Review, 1992, 99, 605-632.	3.8	1,405
175	Infants' sensitivity to effects of gravity on visible object motion Journal of Experimental Psychology: Human Perception and Performance, 1992, 18, 385-393.	0.9	57
176	Perception, ontology, and word meaning. Cognition, 1992, 45, 101-107.	2.2	83
177	Toward a comparative psychology of number. Cognition, 1991, 39, 171-172.	2.2	22
178	Ontological categories guide young children's inductions of word meaning: Object terms and substance terms. Cognition, 1991, 38, 179-211.	2.2	595
179	Principles of Object Perception. Cognitive Science, 1990, 14, 29-56.	1.7	769
180	Numerical abstraction by human infants. Cognition, 1990, 36, 97-127.	2.2	454

#	Article	IF	CITATIONS
181	Object perception in infancy: Interaction of spatial and kinetic information for object boundaries Developmental Psychology, 1989, 25, 185-196.	1.6	40
182	Haptic perception of objects in infancy. Cognitive Psychology, 1988, 20, 1-23.	2.2	89
183	Geometric complexity and object search in infancy Developmental Psychology, 1988, 24, 512-521.	1.6	40
184	Perception of objects and object boundaries by 3â€monthâ€old infants. British Journal of Developmental Psychology, 1987, 5, 367-383.	1.7	61
185	Object permanence in five-month-old infants. Cognition, 1985, 20, 191-208.	2.2	857
186	Perception of partly occluded objects in infancy. Cognitive Psychology, 1983, 15, 483-524.	2.2	725
187	Perception of Moving, Sounding Objects by Four-Month-Old Infants. Perception, 1983, 12, 719-732.	1.2	86
188	The infant's acquisition of knowledge of bimodally specified events. Journal of Experimental Child Psychology, 1981, 31, 279-299.	1.4	64
189	A Sampling of Infant Cognition. PsycCritiques, 1980, 25, 549-550.	0.0	0
190	Perceiving bimodally specified events in infancy Developmental Psychology, 1979, 15, 626-636.	1.6	233
191	Skills of divided attention. Cognition, 1976, 4, 215-230.	2.2	388
192	Infants' intermodal perception of events. Cognitive Psychology, 1976, 8, 553-560.	2.2	229
193	Infant Reaction to Parental Separations When Left with Familiar and Unfamiliar Adults. Journal of Genetic Psychology, 1975, 126, 255-262.	1.2	21
194	Father interaction and separation protest Developmental Psychology, 1973, 9, 83-90.	1.6	63