Danish Saleheen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
2	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	13.7	6,140
3	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
4	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	9.4	2,641
5	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
6	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
7	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.	9.4	1,748
8	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	9.4	1,439
9	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
10	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke subtypes. Nature Genetics, 2018, 50, 524-537.	9.4	1,124
11	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.	9.4	959
12	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
13	Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. Journal of the American College of Cardiology, 2016, 67, 2578-2589.	1.2	723
14	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518, 102-106.	13.7	581
15	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	13.7	544
16	Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nature Genetics, 2018, 50, 1514-1523.	9.4	497
17	Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics, 2017, 49, 403-415.	9.4	492
18	Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nature Genetics, 2011, 43, 984-989.	9.4	481

#	Article	IF	CITATIONS
19	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	9.4	470
20	Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 2020, 52, 680-691.	9.4	445
21	Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351, 1166-1171.	6.0	438
22	Association of <i>LPA</i> Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies. JAMA Cardiology, 2018, 3, 619.	3.0	428
23	Coding Variation in <i>ANGPTL4,LPL,</i> and <i>SVEP1</i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.	13.9	427
24	Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes and Endocrinology,the, 2015, 3, 526-534.	5.5	396
25	Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes and Endocrinology,the, 2015, 3, 507-513.	5.5	389
26	Inactivating Mutations in <i>NPC1L1</i> and Protection from Coronary Heart Disease. New England Journal of Medicine, 2014, 371, 2072-2082.	13.9	386
27	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	9.4	362
28	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	9.4	356
29	ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. Journal of the American College of Cardiology, 2017, 69, 2054-2063.	1.2	348
30	Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Medicine, 2017, 14, e1002383.	3.9	341
31	Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature Genetics, 2015, 47, 1282-1293.	9.4	294
32	Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature, 2017, 544, 235-239.	13.7	292
33	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	9.4	286
34	Genetic Interleukin 6 Signaling Deficiency Attenuates Cardiovascular Risk in Clonal Hematopoiesis. Circulation, 2020, 141, 124-131.	1.6	270
35	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	9.4	261
36	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	9.4	260

#	Article	IF	CITATIONS
37	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	9.4	250
38	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	13.7	248
39	Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Molecular Psychiatry, 2015, 20, 647-656.	4.1	235
40	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	9.4	218
41	Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurology, The, 2016, 15, 174-184.	4.9	217
42	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214
43	Phenotypic Characterization of GeneticallyÂLowered Human Lipoprotein(a) Levels. Journal of the American College of Cardiology, 2016, 68, 2761-2772.	1.2	186
44	Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nature Medicine, 2019, 25, 1274-1279.	15.2	177
45	Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet, The, 2015, 386, 452-460.	6.3	173
46	Genome-Wide Association Study Identifies a Novel Locus Contributing to Type 2 Diabetes Susceptibility in Sikhs of Punjabi Origin From India. Diabetes, 2013, 62, 1746-1755.	0.3	167
47	Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes and Endocrinology,the, 2017, 5, 524-533.	5.5	165
48	Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nature Communications, 2016, 7, 10531.	5.8	149
49	Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2017, 317, 937.	3.8	148
50	Low-frequency and common genetic variation in ischemic stroke. Neurology, 2016, 86, 1217-1226.	1.5	141
51	Causal Assessment of Serum Urate Levels inÂCardiometabolic Diseases Through a Mendelian Randomization Study. Journal of the American College of Cardiology, 2016, 67, 407-416.	1.2	138
52	Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464.	13.7	115
53	Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metabolism, 2016, 24, 234-245.	7.2	103
54	A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genetics, 2020, 16, e1008629.	1.5	101

#	Article	IF	CITATIONS
55	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	5.8	100
56	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	9.4	91
57	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	9.4	89
58	Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling. Circulation, 2018, 137, 222-232.	1.6	87
59	The Pakistan Risk of Myocardial Infarction Study: a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia. European Journal of Epidemiology, 2009, 24, 329-338.	2.5	83
60	Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry, 2020, 25, 2392-2409.	4.1	83
61	The effect of LRRK2 loss-of-function variants in humans. Nature Medicine, 2020, 26, 869-877.	15.2	79
62	Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nature Communications, 2018, 9, 1613.	5.8	78
63	A Novel MMP12 Locus Is Associated with Large Artery Atherosclerotic Stroke Using a Genome-Wide Age-at-Onset Informed Approach. PLoS Genetics, 2014, 10, e1004469.	1.5	75
64	Genetic variation at 16q24.2 is associated with small vessel stroke. Annals of Neurology, 2017, 81, 383-394.	2.8	73
65	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	9.4	68
66	CXCL12 Derived From Endothelial Cells Promotes Atherosclerosis to Drive Coronary Artery Disease. Circulation, 2019, 139, 1338-1340.	1.6	62
67	Rare Protein-Truncating Variants in <i>APOB</i> , Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002376.	1.6	57
68	From Loci to Biology. Circulation Research, 2016, 118, 586-606.	2.0	54
69	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
70	Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes. Nature Communications, 2021, 12, 2579.	5.8	51
71	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	5.8	49
72	New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475 000 Individuals. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	48

#	Article	IF	CITATIONS
73	Common coding variant in <i>SERPINA1</i> increases the risk for large artery stroke. Proceedings of the United States of America, 2017, 114, 3613-3618.	3.3	46
74	Systolic Blood Pressure and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes, 2017, 66, 543-550.	0.3	45
75	Heterozygous <i>ABCC5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.	1.6	45
76	Lipoprotein(a) and Risk of Myocardial Infarction and Death in Chronic Kidney Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1971-1978.	1.1	44
77	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
78	DNA Sequence Variation in <i>ACVR1C</i> Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. Diabetes, 2019, 68, 226-234.	0.3	31
79	Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis. Journal of Clinical Investigation, 2021, 131, .	3.9	31
80	Physical activity, smoking, and genetic predisposition to obesity in people from Pakistan: the PROMIS study. BMC Medical Genetics, 2015, 16, 114.	2.1	27
81	Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci. BMC Medicine, 2021, 19, 232.	2.3	25
82	Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Human Molecular Genetics, 2016, 25, 2070-2081.	1.4	21
83	Identification of genetic effects underlying type 2 diabetes in South Asian and European populations. Communications Biology, 2022, 5, 329.	2.0	21
84	Epidemiology and Public Health Policy of Tobacco Use and Cardiovascular Disorders in Low- and Middle-Income Countries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1811-1819.	1.1	20
85	Common and Rare Genetic Variation in <i>CCR2</i> , <i>CCR5</i> , or <i>CX3CR1</i> and Risk of Atherosclerotic Coronary Heart Disease and Glucometabolic Traits. Circulation: Cardiovascular Genetics, 2016, 9, 250-258.	5.1	20
86	Validating a non-invasive, ALT-based non-alcoholic fatty liver phenotype in the million veteran program. PLoS ONE, 2020, 15, e0237430.	1.1	15
87	Frequency and Determinants of Intracranial Atherosclerotic Stroke in Urban Pakistan. Journal of Stroke and Cerebrovascular Diseases, 2014, 23, 2174-2182.	0.7	6
88	Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2020, 13, e002769.	1.6	5
89	Using Mendelian Randomization Studies to Assess Causality and Identify New Therapeutic Targets in Cardiovascular Medicine. Current Genetic Medicine Reports, 2016, 4, 207-212.	1.9	4
90	Disentangling the Causal Association of Plasma Lipid Traits and Type 2 Diabetes Using Human Genetics. JAMA Cardiology, 2016, 1, 631.	3.0	3

#	Article	IF	CITATIONS
91	FP526VASCULAR CXCR4 LIMITS ATHEROSCLEROSIS BY MAINTAINING ARTERIAL INTEGRITY. Nephrology Dialysis Transplantation, 2018, 33, i216-i216.	0.4	1
92	Analyzing human knockouts to validate GPR151 as a therapeutic target for reduction of body mass index. PLoS Genetics, 2022, 18, e1010093.	1.5	1