Hernan Trimarchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708172/publications.pdf

Version: 2024-02-01

516710 276875 1,903 60 16 41 citations h-index g-index papers 65 65 65 2145 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Crescents in primary glomerulonephritis: a pattern of injury with dissimilar actors. A pathophysiologic perspective. Pediatric Nephrology, 2022, 37, 1205-1214.	1.7	7
2	Corticosteroids and mycophenolic acid analogues in immunoglobulin A nephropathy with progressive decline in kidney function. CKJ: Clinical Kidney Journal, 2022, 15, 771-777.	2.9	6
3	A Core Outcome Set for Trials in Glomerular Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 53-64.	4.5	4
4	Crescents and IgA Nephropathy: A Delicate Marriage. Journal of Clinical Medicine, 2022, 11, 3569.	2.4	9
5	Glomerular endothelial activation, C4d deposits and microangiopathy in immunoglobulin A nephropathy. Nephrology Dialysis Transplantation, 2021, 36, 581-586.	0.7	28
6	Development of an international Delphi survey to establish core outcome domains for trials in adults with glomerular disease. Kidney International, 2021, 100, 881-893.	5.2	7
7	A focus group study of self-management in patients with glomerular disease Kidney International Reports, 2021, 7, 56-67.	0.8	2
8	The implications of focal segmental glomerulosclerosis in children with IgA nephropathy. Pediatric Nephrology, 2020, 35, 2043-2047.	1.7	3
9	Eculizumab, SARS-CoV-2 and atypical hemolytic uremic syndrome. CKJ: Clinical Kidney Journal, 2020, 13, 739-741.	2.9	22
10	Lyso-Gb3 Increases $\hat{l}\pm v\hat{l}^2$ 3 Integrin Gene Expression in Cultured Human Podocytes in Fabry Nephropathy. Journal of Clinical Medicine, 2020, 9, 3659.	2.4	7
11	Focal Segmental Glomerulosclerosis and Scheduled Pretransplant Plasmapheresis: A Timely Diagnosis of Nail-Patella Syndrome Avoided More Futile Immunosuppression. Case Reports in Nephrology, 2020, 2020, 1-4.	0.4	3
12	External Validation of International Risk-Prediction Models of IgA Nephropathy in an Asian-Caucasian Cohort. Kidney International Reports, 2020, 5, 1753-1763.	0.8	21
13	Downregulation of megalin, cubilin, ClC-5 and podocin in Fabry nephropathy: potential implications in the decreased effectiveness of enzyme replacement therapy. Journal of Nephrology, 2020, 34, 1307-1314.	2.0	9
14	Why Target the Gut to Treat IgA Nephropathy?. Kidney International Reports, 2020, 5, 1620-1624.	0.8	37
15	Identifying Outcomes Important to Patients with Glomerular Disease and Their Caregivers. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 673-684.	4.5	66
16	Mechanisms of Podocyte Detachment, Podocyturia, and Risk of Progression of Glomerulopathies. Kidney Diseases (Basel, Switzerland), 2020, 6, 324-329.	2.5	15
17	Fabry disease and COVID-19: international expert recommendations for management based on real-world experience. CKJ: Clinical Kidney Journal, 2020, 13, 913-925.	2.9	11
18	SARS-CoV-2 and Fabry nephropathy: potential risks and the pathophysiological perspective. Journal of Nephropathology, 2020, 9, e36-e36.	0.2	2

#	Article	IF	CITATIONS
19	COVID-19 and acute kidney injury in pediatric subjects: is there a place for eculizumab treatment?. Journal of Nephrology, 2020, 33, 1119-1120.	2.0	9
20	Early decrease in the podocalyxin to synaptopodin ratio in urinary Fabry podocytes. CKJ: Clinical Kidney Journal, 2019, 12, 53-60.	2.9	15
21	FP194IN FABRY NEPHROPATHY, INCREASED URINARY PODOCYTE uPAR-PODOCALYXIN COLOCALIZATION IS DECREASED AND MAY BE INVOLVED IN PODOCYTE DETACHMENT AND START AT EARLY STAGES OF THE DISEASE. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	О
22	Podocytopathy in the mesangial proliferative immunoglobulin A nephropathy: new insights into the mechanisms of damage and progression. Nephrology Dialysis Transplantation, 2019, 34, 1280-1285.	0.7	44
23	lgA nephropathy: "State of the art†a report fromÂthe 15th International Symposium onÂlgAÂNephropathy celebrating the 50th anniversary of its first description. Kidney International, 2019, 95, 750-756.	5.2	17
24	Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2019, 95, 268-280.	5.2	198
25	Mucin-1 Gene Mutation and the Kidney: The Link between Autosomal Dominant Tubulointerstitial Kidney Disease and Focal and Segmental Glomerulosclerosis. Case Reports in Nephrology, 2018, 2018, 1-5.	0.4	1
26	Clinical parameters, LysoGb3, podocyturia, and kidney biopsy in children with Fabry disease: is a correlation possible?. Pediatric Nephrology, 2018, 33, 2095-2101.	1.7	13
27	Oxford Classification of IgA nephropathy 2016: anÂupdate from the IgA Nephropathy Classification Working Group. Kidney International, 2017, 91, 1014-1021.	5.2	748
28	A Multicenter Study of the Predictive Value of Crescents in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2017, 28, 691-701.	6.1	228
29	In IgA Nephropathy, Glomerulosclerosis Is Associated with Increased Urinary CD80 Excretion and Urokinase-Type Plasminogen Activator Receptor-Positive Podocyturia. Nephron Extra, 2017, 7, 52-61.	1.1	10
30	Expression of uPAR in Urinary Podocytes of Patients with Fabry Disease. International Journal of Nephrology, 2017, 2017, 1-7.	1.3	8
31	In Acute IgA Nephropathy, Proteinuria and Creatinine Are in the Spot, but Podocyturia Operates in Silence: Any Place for Amiloride?. Case Reports in Nephrology, 2017, 2017, 1-4.	0.4	5
32	Podocyturia: Potential applications and current limitations. World Journal of Nephrology, 2017, 6, 221.	2.0	24
33	The Kidney in Fabry Disease. FIRE Forum for International Research in Education, 2016, 4, 232640981664816.	0.7	5
34	Biomarcadores en la lesi $ ilde{A}^3$ n renal aguda: $\hat{A}_{\mathcal{E}}$ paradigma o evidencia?. Nefrologia, 2016, 36, 339-346.	0.4	15
35	Podocyturia is significantly elevated in untreated vs treated Fabry adult patients. Journal of Nephrology, 2016, 29, 791-797.	2.0	46
36	Belatacept and mediastinal histoplasmosis in a kidney transplant patient. Journal of Nephropathology, 2016, 5, 84-87.	0.2	6

3

#	Article	IF	CITATIONS
37	Proteinuria: A Cross Road Where the Complement and the Plasminogen-plasmin Systems Meet. Journal of Integrative Nephrology and Andrology, 2016, 3, 37.	0.3	2
38	Abatacept and Glomerular Diseases: The Open Road for the Second Signal as a New Target is Settled Down. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2015, 9, 2-14.	0.6	12
39	Podocyturia: What is in a name?. Journal of Translational Internal Medicine, 2015, 3, 51-56.	2.5	26
40	Proteinuria, 99mTc-DTPA Scintigraphy, Creatinine-, Cystatin- and Combined-Based Equations in the Assessment of Chronic Kidney Disease. ISRN Nephrology, 2014, 2014, 1-16.	1.2	6
41	Residual urinary output in high body mass index individuals on chronic hemodialysis: A disregarded life vest?. World Journal of Nephrology, 2014, 3, 317.	2.0	1
42	Proteinuria and its relation to diverse biomarkers and body mass index in chronic hemodialysis. International Journal of Nephrology and Renovascular Disease, 2013, 6, 113.	1.8	3
43	Primary focal and segmental glomerulosclerosis and soluble factor urokinase-type plasminogen activator receptor. World Journal of Nephrology, 2013, 2, 103-10.	2.0	20
44	Pro-calcitonin and inflammation in chronic hemodialysis. Medicina, 2013, 73, 411-6.	0.6	10
45	Proteinuria: an ignored marker of inflammation and cardiovascular disease in chronic hemodialysis. International Journal of Nephrology and Renovascular Disease, 2012, 5, 1.	1.8	14
46	Is There a Role for Mammalian Target of Rapamycin Inhibition in Renal Failure due to Mesangioproliferative Nephrotic Syndrome?. International Journal of Nephrology, 2012, 2012, 1-6.	1.3	1
47	Creatinine- vs. cystatin C-based equations compared with 99mTcDTPA scintigraphy to assess glomerular filtration rate in chronic kidney disease. Journal of Nephrology, 2012, 25, 1003-1015.	2.0	21
48	Role of aliskiren in blood pressure control and renoprotection. International Journal of Nephrology and Renovascular Disease, 2011, 4, 41.	1.8	10
49	In hemodialysis, adiponectin, and proâ€brain natriuretic peptide levels may be subjected to variations in body mass index. Hemodialysis International, 2011, 15, 477-484.	0.9	11
50	Elevated Pro-Brain Natriuretic Peptide, Troponin T and Malnutrition Inflammatory Score in Chronic Hemodialysis Patients with Overt Cardiovascular Disease. Nephron Clinical Practice, 2011, 117, c198-c205.	2.3	12
51	H1N1 infection and the kidney in critically ill patients. Journal of Nephrology, 2010, 23, 725-31.	2.0	22
52	H1N1 infection and acute kidney injury in the critically ill. CKJ: Clinical Kidney Journal, 2009, 2, 506-506.	2.9	6
53	Aliskiren and the Kidney: Beyond Hypertension. Nephrology Research $\&$ Reviews, 2009, $1, 1$ -4.	0.2	3
54	Dual renin-angiotensin system blockade plus oral methylprednisone for the treatment of proteinuria in IgA nephropathy. Medicina, 2007, 67, 445-50.	0.6	0

#	Article	IF	CITATION
55	Disodium pamidronate for treating severe hypercalcemia in a hemodialysis patient. Nature Clinical Practice Nephrology, 2006, 2, 459-463.	2.0	13
56	Clopidogrel Diminishes Hemodialysis Access Graft Thrombosis. Nephron Clinical Practice, 2006, 102, c128-c132.	2.3	16
57	Randomized Trial of Methylcobalamin and Folate Effects on Homocysteine in Hemodialysis Patients. Nephron, 2002, 91, 58-63.	1.8	18
58	Late-Onset Cytomegalovirus-Associated Interstitial Nephritis in a Kidney Transplant. Nephron, 2002, 92, 490-494.	1.8	7
59	The C677T thermolabile variant of methylene tetrahydrofolate reductase on homocysteine, folate and vitamin B12 in a hemodialysis center. Medicina, 2002, 62, 149-53.	0.6	0
60	Cytomegalovirus maculopapular eruption in a kidney transplant patient. Transplant Infectious Disease, 2001, 3, 47-50.	1.7	18