
Biswaranjan Mohanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5708115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Binding of Small Molecules to <i>Vibrio cholerae</i> DsbA Offers a Starting Point for the Design of Novel Antibacterials. ChemMedChem, 2022, 17, .	3.2	3
2	Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of <i>Burkholderia pseudomallei</i> DsbA. Acta Crystallographica Section D: Structural Biology, 2022, 78, 75-90.	2.3	2
3	Methyl probes in proteins for determining ligand binding mode in weak protein–ligand complexes. Scientific Reports, 2022, 12, .	3.3	3
4	Sideâ€Chain Interactions in <scp>d</scp> / <scp>l</scp> Peptide Nanotubes: Studies by Crystallography, NMR Spectroscopy and Molecular Dynamics. Chemistry - A European Journal, 2021, 27, 14489-14500.	3.3	5
5	Binding of a pyrimidine RNA base-mimic to SARS-CoV-2 nonstructural protein 9. Journal of Biological Chemistry, 2021, 297, 101018.	3.4	10
6	NMR fragment screening reveals a novel small molecule binding site near the catalytic surface of the disulfide–dithiol oxidoreductase enzyme DsbA from Burkholderia pseudomallei. Journal of Biomolecular NMR, 2020, 74, 595-611.	2.8	7
7	Rapid Elaboration of Fragments into Leads by X-ray Crystallographic Screening of Parallel Chemical Libraries (REFiL _X). Journal of Medicinal Chemistry, 2020, 63, 6863-6875.	6.4	16
8	A ligand-induced structural change in fatty acid–binding protein 1 is associated with potentiation of peroxisome proliferator–activated receptor α agonists. Journal of Biological Chemistry, 2019, 294, 3720-3734.	3.4	17
9	The uncharacterized bacterial protein YejG has the same architecture as domain III of elongation factor G. Proteins: Structure, Function and Bioinformatics, 2019, 87, 699-705.	2.6	0
10	Classification of the human phox homology (PX) domains based on their phosphoinositide binding specificities. Nature Communications, 2019, 10, 1528.	12.8	101
11	Controlled Construction of Cyclic <scp>dâ€</scp> / <scp>â€l</scp> Peptide Nanorods. Angewandte Chemie - International Edition, 2019, 58, 596-601.	13.8	8
12	Controlled Construction of Cyclic <scp>dâ€</scp> / <scp>â€l</scp> Peptide Nanorods. Angewandte Chemie, 2019, 131, 606-611.	2.0	2
13	Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens. Journal of Biological Chemistry, 2018, 293, 16559-16571.	3.4	10
14	Applications of NMR Spectroscopy in FBDD. , 2018, , 2211-2231.		2
15	HN, N, Cα and Cβ assignments of the two periplasmic domains of Neisseria meningitidis DsbD. Biomolecular NMR Assignments, 2017, 11, 181-186.	0.8	1
16	The first total synthesis and solution structure of a polypeptin, PE2, a cyclic lipopeptide with broad spectrum antibiotic activity. Organic and Biomolecular Chemistry, 2017, 15, 7173-7180.	2.8	5
17	Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. PLoS ONE, 2017, 12, e0173436.	2.5	17

Applications of NMR Spectroscopy in FBDD. , 2017, , 1-22.

Biswaranjan Mohanty

#	Article	IF	CITATIONS
19	<scp>NMR</scp> reveals structural rearrangements associated to substrate insertion in nucleotideâ€adding enzymes. Protein Science, 2016, 25, 917-925.	7.6	1
20	<scp>NMR</scp> in structural genomics to increase structural coverage of the protein universe. FEBS Journal, 2016, 283, 3870-3881.	4.7	5
21	The Chromatin Remodelling Protein CHD1 Contains a Previously Unrecognised C-Terminal Helical Domain. Journal of Molecular Biology, 2016, 428, 4298-4314.	4.2	14
22	Structure–Activity Studies of β-Hairpin Peptide Inhibitors of the Plasmodium falciparum AMA1–RON2 Interaction. Journal of Molecular Biology, 2016, 428, 3986-3998.	4.2	22
23	Determination of ligand binding modes in weak protein–ligand complexes using sparse NMR data. Journal of Biomolecular NMR, 2016, 66, 195-208.	2.8	19
24	1H, 13C and 15N resonance assignments of a C-terminal domain of human CHD1. Biomolecular NMR Assignments, 2016, 10, 31-34.	0.8	1
25	Structure of amylaseâ€binding protein A of <i>Streptococcus gordonii</i> : A potential receptor for human salivary αâ€amylase enzyme. Protein Science, 2015, 24, 1013-1018.	7.6	8
26	Application of Fragmentâ€Based Screening to the Design of Inhibitors of <i>Escherichia coli</i> DsbA. Angewandte Chemie - International Edition, 2015, 54, 2179-2184.	13.8	46
27	Small Molecule Inhibitors of Disulfide Bond Formation by the Bacterial DsbA–DsbB Dual Enzyme System. ACS Chemical Biology, 2015, 10, 957-964.	3.4	27
28	Promiscuous 2-Aminothiazoles (PrATs): A Frequent Hitting Scaffold. Journal of Medicinal Chemistry, 2015, 58, 1205-1214.	6.4	75
29	Structure and Functional Characterization of the Conserved JAK Interaction Region in the Intrinsically Disordered N-Terminus of SOCS5. Biochemistry, 2015, 54, 4672-4682.	2.5	14
30	NMR structure determination of the protein NP_344798.1 as the first representative of Pfam PF06042. Journal of Biomolecular NMR, 2015, 61, 83-87.	2.8	4
31	Assignments of human integrin α1I domain in the apo and Mg2+ bound states. Biomolecular NMR Assignments, 2014, 8, 117-121.	0.8	4
32	Kv1.3 channelâ€blocking immunomodulatory peptides from parasitic worms: implications for autoimmune diseases. FASEB Journal, 2014, 28, 3952-3964.	0.5	76
33	Characterization of Two Distinct Modes of Drug Binding to Human Intestinal Fatty Acid Binding Protein. ACS Chemical Biology, 2014, 9, 2526-2534.	3.4	24
34	NMR Structures of α-Proteobacterial ATPase-Regulating ζ-Subunits. Journal of Molecular Biology, 2014, 426, 2547-2553.	4.2	18
35	Molecular Insights into the Interaction between Plasmodium falciparum Apical Membrane Antigen 1 and an Invasion-Inhibitory Peptide. PLoS ONE, 2014, 9, e109674.	2.5	10
36	Structural representative of the protein family PF14466 has a new fold and establishes links with the C2 and PLAT domains from the widely distant Pfams PF00168 and PF01477. Protein Science, 2013, 22, 1000-1007.	7.6	5

BISWARANJAN MOHANTY

#	Article	IF	CITATIONS
37	NMRâ€profiles of protein solutions. Biopolymers, 2013, 99, 825-831.	2.4	17
38	The Structure of Integrin α11 Domain in Complex with a Collagen-mimetic Peptide. Journal of Biological Chemistry, 2013, 288, 36796-36809.	3.4	22
39	The Relaxin Receptor (RXFP1) Utilizes Hydrophobic Moieties on a Signaling Surface of Its N-terminal Low Density Lipoprotein Class A Module to Mediate Receptor Activation. Journal of Biological Chemistry, 2013, 288, 28138-28151.	3.4	25
40	Comparative Sequence, Structure and Redox Analyses of Klebsiella pneumoniae DsbA Show That Anti-Virulence Target DsbA Enzymes Fall into Distinct Classes. PLoS ONE, 2013, 8, e80210.	2.5	24
41	The J-UNIO protocol for automated protein structure determination by NMR in solution. Journal of Biomolecular NMR, 2012, 53, 341-354.	2.8	57
42	NMR structure of the protein NP_247299.1: comparison with the crystal structure. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1367-1380.	0.7	13
43	Comparison of NMR and crystal structures for the proteins TM1112 and TM1367. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1381-1392.	0.7	14
44	Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1393-1405.	0.7	18
45	Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot. Nanotechnology, 2007, 18, 445102.	2.6	33
46	Effect of gelatin molecular charge heterogeneity on formation of intermolecular complexes and coacervation transition. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1511-1520.	2.1	17
47	Internal pressure fluctuations in coacervates and syneresis. Europhysics Letters, 2006, 76, 965-971.	2.0	7
48	Length scale hierarchy in sol, gel, and coacervate phases of gelatin. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1653-1667.	2.1	29
49	Flory Temperature and Upper Critical Solution Temperature of Gelatin Solutions. Biomacromolecules, 2005, 6, 1623-1627.	5.4	43
50	Microscopic structure of gelatin coacervates. International Journal of Biological Macromolecules, 2005, 36, 39-46.	7.5	62
51	Anomalous self-assembly of gelatin in ethanol-water marginal solvent. Physical Review E, 2004, 69, 021902.	2.1	29
52	Systematic of Alcohol-Induced Simple Coacervation in Aqueous Gelatin Solutions. Biomacromolecules, 2003, 4, 1080-1086.	5.4	105