Jin-Hu Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimensionality Modulates Electrical Conductivity in Compositionally Constant One-, Two-, and Three-Dimensional Frameworks. Journal of the American Chemical Society, 2022, 144, 5583-5593.	13.7	24
2	Structural, Thermodynamic, and Transport Properties of the Small-Gap Two-Dimensional Metal–Organic Kagomé Materials Cu ₃ (hexaiminobenzene) ₂ and Ni ₃ (hexaiminobenzene) ₂ . Inorganic Chemistry, 2022, 61, 6480-6487.	4.0	4
3	Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks. Nature Materials, 2021, 20, 222-228.	27.5	239
4	High-Capacitance Pseudocapacitors from Li ⁺ Ion Intercalation in Nonporous, Electrically Conductive 2D Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 2285-2292.	13.7	99
5	Polymer Crystals: Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals (Adv. Mater. 10/2021). Advanced Materials, 2021, 33, 2170075.	21.0	1
6	Dualâ€lon Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie - International Edition, 2021, 60, 27119-27125.	13.8	17
7	Dualâ€lon Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie, 2021, 133, 27325-27331.	2.0	2
8	Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals. Advanced Materials, 2021, 33, e2006794.	21.0	52
9	Why conductivity is not always king – physical properties governing the capacitance of 2D metal–organic framework-based EDLC supercapacitor electrodes: a Ni ₃ (HITP) ₂ case study. Faraday Discussions, 2021, 231, 298-304.	3.2	12
10	Continuous Electrical Conductivity Variation in M ₃ (Hexaiminotriphenylene) ₂ (M = Co, Ni, Cu) MOF Alloys. Journal of the American Chemical Society, 2020, 142, 12367-12373.	13.7	169
11	A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nature Communications, 2020, 11, 3292.	12.8	105
12	Chemiresistive Sensing of Ambient CO ₂ by an Autogenously Hydrated Cu ₃ (hexaiminobenzene) ₂ Framework. ACS Central Science, 2019, 5, 1425-1431.	11.3	79
13	Organic Semiconducting Alloys with Tunable Energy Levels. Journal of the American Chemical Society, 2019, 141, 6561-6568.	13.7	65
14	Waferâ€Scale Fabrication of Highâ€Performance nâ€Type Polymer Monolayer Transistors Using a Multi‣evel Selfâ€Assembly Strategy. Advanced Materials, 2019, 31, e1806747.	21.0	68
15	Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2018, 10, 7919-7926.	8.0	188
16	Reversible Metalation and Catalysis with a Scorpionate-like Metallo-ligand in a Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 17394-17398.	13.7	48
17	Donor End-Capped Hexafluorinated Oligomers for Organic Solar Cells with 9.3% Efficiency by Engineering the Position of π-Bridge and Sequence of Two-Step Annealing. Chemistry of Materials, 2017, 29, 1036-1046.	6.7	39
18	Highly Efficient NIR-II Photothermal Conversion Based on an Organic Conjugated Polymer. Chemistry of Materials, 2017, 29, 718-725.	6.7	217

Jin-Hu Dou

#	Article	IF	CITATIONS
19	Unraveling the Solutionâ€State Supramolecular Structures of Donor–Acceptor Polymers and their Influence on Solidâ€State Morphology and Chargeâ€Transport Properties. Advanced Materials, 2017, 29, 1701072.	21.0	125
20	Signature of Metallic Behavior in the Metal–Organic Frameworks M ₃ (hexaiminobenzene) ₂ (M = Ni, Cu). Journal of the American Chemical Society, 2017, 139, 13608-13611.	13.7	324
21	Strong Electronâ€Deficient Polymers Lead to High Electron Mobility in Air and Their Morphologyâ€Dependent Transport Behaviors. Advanced Materials, 2016, 28, 7213-7219.	21.0	168
22	Embedding electron-deficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors. Chemical Science, 2016, 7, 5753-5757.	7.4	82
23	Field-Effect Transistors: A Cofacially Stacked Electron-Deficient Small Molecule with a High Electron Mobility of over 10 cm2Vâ^'1sâ^'1in Air (Adv. Mater. 48/2015). Advanced Materials, 2015, 27, 8120-8120.	21.0	2
24	A Cofacially Stacked Electronâ€Deficient Small Molecule with a High Electron Mobility of over 10 cm ² V ^{â~1} s ^{â~1} in Air. Advanced Materials, 2015, 27, 8051-8055.	21.0	97
25	Effect of Halogenation in Isoindigo-Based Polymers on the Phase Separation and Molecular Orientation of Bulk Heterojunction Solar Cells. Macromolecules, 2015, 48, 5570-5577.	4.8	88
26	Fine-Tuning of Crystal Packing and Charge Transport Properties of BDOPV Derivatives through Fluorine Substitution. Journal of the American Chemical Society, 2015, 137, 15947-15956.	13.7	224
27	Conjugated Polymers: Systematic Investigation of Sideâ€Chain Branching Position Effect on Electron Carrier Mobility in Conjugated Polymers (Adv. Funct. Mater. 40/2014). Advanced Functional Materials, 2014, 24, 6404-6404.	14.9	0
28	Pentacyclic aromatic bislactam-based conjugated polymers: constructed by Beckmann rearrangement and application in organic field-effect transistor. Polymer Chemistry, 2014, 5, 5369-5374.	3.9	15
29	Systematic Investigation of Sideâ€Chain Branching Position Effect on Electron Carrier Mobility in Conjugated Polymers. Advanced Functional Materials, 2014, 24, 6270-6278.	14.9	116
30	A corannulene-based donor–acceptor polymer for organic field-effect transistors. RSC Advances, 2014, 4, 56749-56755.	3.6	34
31	Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chemical Science, 2013, 4, 2447.	7.4	109