
Julian H Lombard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5707701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-dose angiotensin II supplementation restores flow-induced dilation mechanisms in cerebral arteries of Sprague-Dawley rats on a high salt diet. Journal of Hypertension, 2022, 40, 441-452.	0.5	3
2	Can Myogenic Tone Protect Endothelial Function? Integrating Myogenic Activation and Dilator Reactivity for Cerebral Resistance Arteries in Metabolic Disease. Journal of Vascular Research, 2021, 58, 286-300.	1.4	1
3	Evaluation of Cerebral Blood Flow Autoregulation in the Rat Using Laser Doppler Flowmetry. Journal of Visualized Experiments, 2020, , .	0.3	2
4	Interaction between Mas1 and AT1RA contributes to enhancement of skeletal muscle angiogenesis by angiotensin-(1-7) in Dahl salt-sensitive rats. PLoS ONE, 2020, 15, e0232067.	2.5	7
5	Blood Pressure, Vascular Reactivity, and SOD Expression/Activity in Mas1 Receptor Knockout Rats in the Dahl Saltâ€6ensitive Genetic Background. FASEB Journal, 2020, 34, 1-1.	0.5	1
6	Effect of Nearby Construction Activity on Endothelial Function, Sensitivity to Nitric Oxide, and Potassium Channel Activity in the Middle Cerebral Arteries of Rats. Journal of the American Association for Laboratory Animal Science, 2020, , .	1.2	1
7	Title is missing!. , 2020, 15, e0232067.		0
8	Title is missing!. , 2020, 15, e0232067.		0
9	Title is missing!. , 2020, 15, e0232067.		0
10	Title is missing!. , 2020, 15, e0232067.		0
11	NRF 2 activation with Protandim attenuates saltâ€induced vascular dysfunction and microvascular rarefaction. Microcirculation, 2019, 26, e12575.	1.8	8
12	High salt diet impairs cerebral blood flow regulation via saltâ€induced angiotensin <scp>II</scp> suppression. Microcirculation, 2019, 26, e12518.	1.8	17
13	Detrimental Effects of Nearby Construction Activity on Endothelial and Vascular Smooth Muscle Function in Cerebral Arteries of Spragueâ€Dawley (Sâ€D) Rats. FASEB Journal, 2019, 33, .	0.5	Ο
14	Mas1 Receptor Knockout Rats as a Novel Model to Study Vascular Function in Saltâ€Sensitive Hypertension. FASEB Journal, 2019, 33, 692.8.	0.5	0
15	Contribution of mitochondriaâ€derived free radicals to endothelial dysfunction in human skeletal muscle feed arteries: another hazard of the ageing process. Acta Physiologica, 2018, 222, e12947.	3.8	1
16	High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H718-H730.	3.2	13
17	Do computers dream of electric glomeruli?. Kidney International, 2018, 94, 635.	5.2	0
18	Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole	6.1	91

Kidney Sections. Journal of the American Society of Nephrology: JASN, 2018, 29, 2081-2088.

#	Article	IF	CITATIONS
19	Effect of NRF2 Activation on Endothelial Function, Microvessel Density, and Gene Expression in Rats fed High Salt Diet. FASEB Journal, 2018, 32, 846.12.	0.5	0
20	Nrf2 Deletion is Associated with Impaired BK Ca Channel Expression and Function in Rat Cerebral Arterial Muscle Cells. FASEB Journal, 2018, 32, 575.7.	0.5	0
21	Mechanisms of Mas1 Receptor-Mediated Signaling in the Vascular Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 433-445.	2.4	28
22	Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats. Journal of Visualized Experiments, 2017, , .	0.3	0
23	Role of vascular reactive oxygen species in regulating cytochrome P450â€4A enzyme expression in Dahl saltâ€sensitive rats. Microcirculation, 2016, 23, 540-548.	1.8	8
24	Angiotensin-(1-7) Selectively Induces Relaxation and Modulates Endothelium-Dependent Dilation in Mesenteric Arteries of Salt-Fed Rats. Journal of Vascular Research, 2016, 53, 105-118.	1.4	18
25	The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H478-H487.	3.2	59
26	Increased peripheral vascular disease risk progressively constrains perfusion adaptability in the skeletal muscle microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H488-H504.	3.2	30
27	Salt, Angiotensin II, Superoxide, and Endothelial Function. , 2015, 6, 215-254.		38
28	The role of cycloâ€oxygenaseâ€1 in highâ€salt dietâ€induced microvascular dysfunction in humans. Journal of Physiology, 2015, 593, 5313-5324.	2.9	43
29	Saltâ€Induced Oxidant Stress in Spragueâ€Đawley (Sâ€D) Rats with a Deletion Mutation of the Nrf2 Gene. FASEB Journal, 2015, 29, 795.5.	0.5	0
30	Mechanisms of Angiotensinâ€(1â€7) induced MAS1 receptor signaling in the vascular endothelium. FASEB Journal, 2015, 29, 796.2.	0.5	0
31	Vascular dysfunction precedes hypertension associated with a blood pressure locus on rat chromosome 12. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1103-H1110.	3.2	3
32	Amelioration of salt-induced vascular dysfunction in mesenteric arteries of Dahl salt-sensitive rats by missense mutation of extracellular superoxide dismutase. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H339-H347.	3.2	12
33	FMRI and fcMRI phenotypes map the genomic effect of chromosome 13 in Brown Norway and Dahl salt-sensitive rats. Neurolmage, 2014, 90, 403-412.	4.2	5
34	Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. Microvascular Research, 2013, 89, 134-145.	2.5	22
35	Role of the CYP4A/20-HETE pathway in vascular dysfunction of the Dahl salt-sensitive rat. Clinical Science, 2013, 124, 695-700.	4.3	29
36	Introgression of Brown Norway <i>CYP4A</i> genes on to the Dahl salt-sensitive background restores vascular function in SS-5BN consomic rats. Clinical Science, 2013, 124, 333-342.	4.3	14

#	Article	IF	CITATIONS
37	AT1 Receptors Prevent Salt-Induced Vascular Dysfunction in Isolated Middle Cerebral Arteries of 2 Kidney-1 Clip Hypertensive Rats. American Journal of Hypertension, 2013, 26, 1398-1404.	2.0	10
38	Low-Dose Angiotensin II Infusion Restores Vascular Function in Cerebral Arteries of High Salt-Fed Rats by Increasing Copper/Zinc Superoxide Dimutase Expression. American Journal of Hypertension, 2013, 26, 739-747.	2.0	36
39	Plekha7, a candidate gene for human hypertension, plays a critical role in the regulation of intracellular calcium. FASEB Journal, 2013, 27, .	0.5	0
40	The Effects of AT1 Receptor Blockade on Skin Microcirculatory Blood Flow and Thromboxane A2 (TXA2) Production in Young Healthy Women. FASEB Journal, 2013, 27, 898.14.	0.5	0
41	A role for Nrf2 in the prevention of saltâ€induced vascular dysfunction. FASEB Journal, 2013, 27, 1189.11.	0.5	0
42	A mechanistic collagen recruitment model can explain passive property differences in resistance arteries from salt sensitive, fawn hooded and brown norway rats on low salt diets. FASEB Journal, 2013, 27, 899.4.	0.5	0
43	Dahl Salt-Sensitive Rats Are Protected Against Vascular Defects Related to Diet-Induced Obesity. Hypertension, 2012, 60, 404-410.	2.7	26
44	PPAR-Ï' Pathway to Vascular Dysfunction. Cell Metabolism, 2012, 16, 410-411.	16.2	0
45	The effects of circulating angiotensin II levels on vascular gene expression in normotensive rats. FASEB Journal, 2012, 26, 675.1.	0.5	0
46	Role of CYP4A/20â€HETE Pathway in Vascular Oxidative Stress in the Dahl Saltâ€Sensitive Rat. FASEB Journal, 2012, 26, 853.23.	0.5	0
47	Amelioration of Endothelial Dysfunction in Middle Cerebral Arteries (MCA) of Fawnâ€Hooded Rats by Antioxidant Treatment and Chromosomal Substitution. FASEB Journal, 2012, 26, 1098.13.	0.5	0
48	Identifying Plekha7, an adherens junction protein, as a regulator of protein excretion in the kidney. FASEB Journal, 2012, 26, .	0.5	0
49	EGF deficiency contributes to the development of saltâ€sensitive hypertension via upregulation of ENaC activity. FASEB Journal, 2012, 26, 867.9.	0.5	0
50	Introgression of the Brown Norway Renin Allele Onto the Dahl Salt-Sensitive Genetic Background Increases Cu/Zn SOD Expression in Cerebral Arteries. American Journal of Hypertension, 2011, 24, 563-568.	2.0	19
51	Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1341-H1352.	3.2	54
52	Modulation by Cytochrome P450-4A ω-Hydroxylase Enzymes of Adrenergic Vasoconstriction and Response to Reduced PO2 in Mesenteric Resistance Arteries of Dahl Salt-Sensitive Rats. Microcirculation, 2010, 17, no-no.	1.8	9
53	Uncoupling Protein 2 (UCP2): Another Player in the Complex Drama of Vascular Salt Sensitivity. American Journal of Hypertension, 2010, 23, 816-816.	2.0	5
54	Restoration of Cerebral Vascular Relaxation in Renin Congenic Rats by Introgression of the Dahl R Renin Gene. American Journal of Hypertension, 2010, 23, 243-248.	2.0	11

#	Article	IF	CITATIONS
55	Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1024-H1033.	3.2	45
56	Vascular responses in aortic rings of a consomic rat panel derived from the Fawn Hooded Hypertensive strain. Physiological Genomics, 2010, 42A, 244-258.	2.3	8
57	Impaired relaxation of cerebral arteries in the absence of elevated salt intake in normotensive congenic rats carrying the Dahl salt-sensitive renin gene. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1865-H1874.	3.2	25
58	Introgression of the Brown Norway Renin Gene onto the Dahl Salt Sensitive Genetic Background Restores Endotheliumâ€Đependent Vascular Relaxation by Reducing Oxidative Stress in the Cerebral Vasculature. FASEB Journal, 2010, 24, 776.1.	0.5	0
59	Role of 20â€HETE in Differential Effects of High Salt Diet on Resistance Artery Function in Dahl Salt‣ensitive (SS) Rats and SSâ€5BN Consomic Rats. FASEB Journal, 2010, 24, 976.6.	0.5	0
60	Angiotensin II maintains cerebral vascular relaxation via EGF receptor transactivation and ERK1/2. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1296-H1303.	3.2	17
61	Reduced oxidant stress, increased NOâ€dependent vasodilatation, and improved endothelial function with voluntary exercise in old mice: another excuse for long walks on the beach. Journal of Physiology, 2009, 587, 3059-3059.	2.9	0
62	Time-Course and Mechanisms of Restored Vascular Relaxation by Reduced Salt Intake and Angiotensin II Infusion in Rats Fed a High-Salt Diet. Microcirculation, 2009, 16, 220-234.	1.8	30
63	Modulation of Vascular O2Responses by Cytochrome 450-4A ï‰-Hydroxylase Metabolites In Dahl Salt-Sensitive Rats. Microcirculation, 2009, 16, 345-354.	1.8	12
64	CYP450 4A inhibition attenuates O2 induced arteriolar constriction in chronic but not acute Goldblatt hypertension. Microvascular Research, 2009, 78, 442-446.	2.5	3
65	Suppressed Plasma Angiotensin II and Reduced Antioxidant Enzyme Expression Contribute to Impaired Vascular Relaxation in Dahl Salt‧ensitive Rats. FASEB Journal, 2009, 23, 1017.14.	0.5	0
66	Effect of High Salt Diet on Response of Rat Mesenteric Resistance Arteries to Angiotensin (1â€7). FASEB Journal, 2009, 23, 952.1.	0.5	0
67	Receptor-Mediated Events in the Microcirculation. , 2008, , 285-348.		3
68	Sex-specific differences in chromosome-dependent regulation of vascular reactivity in female consomic rat strains from a SS × BN cross. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R516-R527.	1.8	12
69	Restoration of Vascular Relaxation in Cerebral Arteries of Congenic Dahl Rats Receiving the Brown Norway (BN) Renin Gene. FASEB Journal, 2008, 22, 1142.5.	0.5	0
70	Effect of high salt diet and antioxidants on vascular function of mesenteric arteries. FASEB Journal, 2008, 22, 1153.3.	0.5	0
71	Effect of High-Salt Diet on Vascular Relaxation and Oxidative Stress in Mesenteric Resistance Arteries. Journal of Vascular Research, 2007, 44, 382-390.	1.4	100
72	Consomic strategies to localize genomic regions related to vascular reactivity in the Dahl salt-sensitive rat. Physiological Genomics, 2006, 26, 218-225.	2.3	26

#	Article	IF	CITATIONS
73	Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries. Journal of Applied Physiology, 2006, 100, 1117-1123.	2.5	66
74	Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H929-H938.	3.2	48
75	Role of angiotensin II (ANG II) suppression in impaired modulatory effect of NO on contractile force in aortas from rats on high salt (HS) diet. FASEB Journal, 2006, 20, A1179.	0.5	0
76	Role of increased oxidative stress and cytochrome P450â€4A ï‰â€hydroxylase (CYP450â€4A) metabolites in contributing to saltâ€induced loss of arteriolar dilation in the hamster cheek pouch. FASEB Journal, 2006, 20, A268.	0.5	0
77	Oral administration of Tempol increases blood flow and improves vasodilator responses in the hind limb circulation of Dahl saltâ€sensitive (SS) rats on a low salt diet. FASEB Journal, 2006, 20, A268.	0.5	0
78	Angiotensin II infusion and reduced salt intake restore normal vasodilator mechanisms in Spragueâ€Dawley rats fed a high salt diet. FASEB Journal, 2006, 20, A268.	0.5	0
79	Chronic At1 Receptor Blockade Alters the Mechanisms Mediating Hypoxic Dilation in Middle Cerebral Arteries. Journal of Cardiovascular Pharmacology, 2005, 46, 706-712.	1.9	13
80	Effects of high-salt diet on CYP450-4A ω-hydroxylase expression and active tone in mesenteric resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1557-H1565.	3.2	35
81	Salt-induced ANG II suppression impairs the response of cerebral artery smooth muscle cells to prostacyclin. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H908-H913.	3.2	12
82	Restoration of normal vascular relaxation mechanisms in cerebral arteries by chromosomal substitution in consomic SS.13 ^{BN} rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H188-H195.	3.2	30
83	Reduced Angiotensin II and Oxidative Stress Contribute to Impaired Vasodilation in Dahl Salt-Sensitive Rats on Low-Salt Diet. Hypertension, 2005, 45, 687-691.	2.7	46
84	Evaluation of Cytochrome P450-4A ω-Hydroxylase and 20-Hydroxyeicosatetraenoic Acid as an O2 Sensing Mechanism in the Microcirculation. Methods in Enzymology, 2004, 381, 140-165.	1.0	4
85	Chronic AT1receptor blockade alters mechanisms mediating responses to hypoxia in rat skeletal muscle resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H545-H552.	3.2	15
86	Introgression of chromosome 13 in Dahl salt-sensitive genetic background restores cerebral vascular relaxation. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H957-H962.	3.2	34
87	Expression of Cytochrome P450-4A Isoforms in the Rat Cremaster Muscle Microcirculation. Microcirculation, 2004, 11, 89-96.	1.8	10
88	Arteriolar Responses to Vasodilator Stimuli and ElevatedPO2in Renin Congenic and Dahl Salt-Sensitive Rats. Microcirculation, 2004, 11, 669-677.	1.8	14
89	Effect of high-salt diet on NO release and superoxide production in rat aorta. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H575-H583.	3.2	100
90	Skeletal Muscle Arteriolar Reactivity in SS.BN13 Consomic Rats and Dahl Salt-Sensitive Rats. Hypertension, 2003, 41, 1012-1015.	2.7	31

#	Article	IF	CITATIONS
91	High-salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1124-H1133.	3.2	63
92	Parenchymal Tissue Cytochrome P450 4A Enzymes Contribute to Oxygen-Induced Alterations in Skeletal Muscle Arteriolar Tone. Microvascular Research, 2002, 63, 340-343.	2.5	8
93	High-salt diet depresses acetylcholine reactivity proximal to NOS activation in cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H353-H363.	3.2	38
94	Interaction of myogenic mechanisms and hypoxic dilation in rat middle cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2276-H2281.	3.2	18
95	Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R309-R319.	1.8	54
96	Foreword to the Special Issue on Microcirculatory Adaptations to Hypertension. Microcirculation, 2002, 9, 221-223.	1.8	0
97	Role of Prostanoids and 20-HETE in Mediating Oxygen-Induced Constriction of Skeletal Muscle Resistance Arteries. Microvascular Research, 2001, 62, 271-283.	2.5	21
98	20-HETE modulates myogenic response of skeletal muscle resistance arteries from hypertensive Dahl-SS rats. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1066-H1074.	3.2	43
99	Cytochrome <i>P-</i> 450 ω-hydroxylase: a potential O ₂ sensor in rat arterioles and skeletal muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1840-H1845.	3.2	47
100	Angiotensin II AT ₁ receptors preserve vasodilator reactivity in skeletal muscle resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H2196-H2202.	3.2	45
101	High-salt diet impairs hypoxia-induced cAMP production and hyperpolarization in rat skeletal muscle arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1808-H1815.	3.2	31
102	20â€HETE Contributes to Myogenic Activation of Skeletal Muscle Resistance Arteries in Brown Norway and Spragueâ€Đawley Rats. Microcirculation, 2001, 8, 45-55.	1.8	27
103	Altered Mechanisms Underlying Hypoxic Dilation of Skeletal Muscle Resistance Arteries of Hypertensive versus Normotensive Dahl Rats. Microcirculation, 2001, 8, 115-127.	1.8	32
104	Differential Effect of Cytochrome Pâ€450 ωâ€Hydroxylase Inhibition on O ₂ â€Induced Constriction of Arterioles in SHR With Early and Established Hypertension. Microcirculation, 2001, 8, 435-443.	1.8	18
105	20-HETE Contributes to Myogenic Activation of Skeletal Muscle Resistance Arteries in Brown Norway and Sprague-Dawley Rats. Microcirculation, 2001, 8, 45-55.	1.8	6
106	Altered Mechanisms Underlying Hypoxic Dilation of Skeletal Muscle Resistance Arteries of Hypertensive versus Normotensive Dahl Rats. Microcirculation, 2001, 8, 115-127.	1.8	23
107	Contribution of Extrinsic Factors and Intrinsic Vascular Alterations to Reduced Arteriolar Reactivity with High‣alt Diet and Hypertension. Microcirculation, 2000, 7, 281-289.	1.8	4
108	Elevated salt intake impairs dilation of rat skeletal muscle resistance arteries via ANG II suppression. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H500-H506.	3.2	50

#	Article	IF	CITATIONS
109	Contribution of cytochrome P-450 ω-hydroxylase to altered arteriolar reactivity with high-salt diet and hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1517-H1526.	3.2	52
110	Microvascular flow and tissue Po 2 in skeletal muscle of chronic reduced renal mass hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2295-H2302.	3.2	16
111	Increased Intravascular Pressure Does Not Enhance Skeletal Muscle Arteriolar Constriction to Oxygen or Angiotensin II. Microvascular Research, 2000, 59, 176-180.	2.5	3
112	Reduced Renal Mass Hypertension, but Not High Salt Diet, Alters Skeletal Muscle Arteriolar Distensibility and Myogenic Responses. Microvascular Research, 2000, 59, 255-264.	2.5	6
113	Cytochrome P-450 ω-hydroxylase senses O2 in hamster muscle, but not cheek pouch epithelium, microcirculation. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H503-H508.	3.2	35
114	Electrical and mechanical responses of rat middle cerebral arteries to reduced P O 2 and prostacyclin. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H509-H516.	3.2	55
115	Loss of Endothelium and Receptor-Mediated Dilation in Pial Arterioles of Rats Fed a Short-Term High Salt Diet. Hypertension, 1999, 33, 686-688.	2.7	69
116	Development and Reversibility of Altered Skeletal Muscle Arteriolar Structure and Reactivity with High Salt Diet and Reduced Renal Mass Hypertension. Microcirculation, 1999, 6, 215-225.	1.8	30
117	Acute Elevations in Salt Intake and Reduced Renal Mass Hypertension Compromise Arteriolar Dilation in Rat Cremaster Muscle. Microvascular Research, 1999, 57, 273-283.	2.5	32
118	Selective Potentiation of Angiotensin-Induced Constriction of Skeletal Muscle Resistance Arteries by Chronic Elevations in Dietary Salt Intake. Microvascular Research, 1999, 57, 310-319.	2.5	20
119	Development and Reversibility of Altered Skeletal Muscle Arteriolar Structure and Reactivity with High Salt Diet and Reduced Renal Mass Hypertension. Microcirculation, 1999, 6, 215-225.	1.8	16
120	Chronic Elevations in Salt Intake and Reduced Renal Mass Hypertension Compromise Mechanisms of Arteriolar Dilation. Microvascular Research, 1998, 56, 218-227.	2.5	51
121	Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1395-H1403.	3.2	51
122	Identification of a Putative Microvascular Oxygen Sensor. Circulation Research, 1996, 79, 54-61.	4.5	154
123	Rapid Microvessel Rarefaction With Elevated Salt Intake and Reduced Renal Mass Hypertension in Rats. Circulation Research, 1996, 79, 324-330.	4.5	89
124	Responses of Cremasteric Arterioles of Spontaneously Hypertensive Rats to Changes in Extracellular K+Concentration. Microcirculation, 1995, 2, 355-362.	1.8	17
125	Electrical and Mechanical Responses to Endothelin in Small Arteries of the Dog Kidney. Endothelium: Journal of Endothelial Cell Research, 1994, 2, 67-72.	1.7	1
126	Hypoxia increases the activity of Ca2+-sensitive K+ channels in cat cerebral arterial muscle cell membranes. Pflugers Archiv European Journal of Physiology, 1994, 428, 621-630.	2.8	99