
Annette Schenck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5706678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. American Journal of Human Genetics, 2022, 109, 601-617.	6.2	16
2	Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genetics, 2022, 18, e1010159.	3.5	7
3	Investigating cytosolic 5′-nucleotidase II family genes as candidates for neuropsychiatric disorders in Drosophila (114/150 chr). Translational Psychiatry, 2021, 11, 55.	4.8	11
4	Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain, 2021, 144, 1467-1481.	7.6	18
5	The epigenetic regulator G9a attenuates stress-induced resistance and metabolic transcriptional programs across different stressors and species. BMC Biology, 2021, 19, 112.	3.8	10
6	The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. Science Advances, 2021, 7, .	10.3	24
7	Intracellular Lipid Accumulation and Mitochondrial Dysfunction Accompanies Endoplasmic Reticulum Stress Caused by Loss of the Co-chaperone DNAJC3. Frontiers in Cell and Developmental Biology, 2021, 9, 710247.	3.7	13
8	From man to fly – convergent evidence links <i>FBXO25</i> to ADHD and comorbid psychiatric phenotypes. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 545-555.	5.2	7
9	Reply: A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia; and Novel GDAP2 pathogenic variants cause autosomal recessive spinocerebellar ataxia-27 (SCAR27) in a Chinese family. Brain, 2020, 143, e51-e51.	7.6	1
10	From Rare Copy Number Variants to Biological Processes in ADHD. American Journal of Psychiatry, 2020, 177, 855-866.	7.2	26
11	O-GlcNAcase contributes to cognitive function in Drosophila. Journal of Biological Chemistry, 2020, 295, 8636-8646.	3.4	16
12	Contribution of Intellectual Disability–Related Genes to ADHD Risk and to Locomotor Activity in <i>Drosophila</i> . American Journal of Psychiatry, 2020, 177, 526-536.	7.2	22
13	Integrative network and brain expression analysis reveals mechanistic modules in ataxia. Journal of Medical Genetics, 2019, 56, 283-292.	3.2	15
14	Intellectual disability and autism spectrum disorders â€~on the fly': insights from <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2019, 12, .	2.4	38
15	Habituation Learning Is a Widely Affected Mechanism in Drosophila Models of Intellectual Disability and Autism Spectrum Disorders. Biological Psychiatry, 2019, 86, 294-305.	1.3	39
16	The histone methyltransferase C9a regulates tolerance to oxidative stress–induced energy consumption. PLoS Biology, 2019, 17, e2006146.	5.6	21
17	A Drosophila Mitochondrial Complex I Deficiency Phenotype Array. Frontiers in Genetics, 2019, 10, 245.	2.3	14
18	Peroxisome-associated Sgroppino links fat metabolism with survival after RNA virus infection in Drosophila, Scientific Reports, 2019, 9, 2065.	3.3	13

ANNETTE SCHENCK

#	Article	IF	CITATIONS
19	Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS ONE, 2019, 14, e0211652.	2.5	26
20	Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychiatric Genetics, 2019, 29, 1-17.	1.1	23
21	Feeding difficulties, a key feature of the <i>Drosophila</i> NDUFS4 mitochondrial disease model. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	18
22	SnapShot: Biology of Genetic Ataxias. Cell, 2018, 175, 890-890.e1.	28.9	3
23	GDAP2 mutations implicate susceptibility to cellular stress in a new form of cerebellar ataxia. Brain, 2018, 141, 2592-2604.	7.6	19
24	A homozygous <i>FITM2</i> mutation causes a deafness-dystonia syndrome with motor regression and signs of ichthyosis and sensory neuropathy. DMM Disease Models and Mechanisms, 2017, 10, 105-118.	2.4	16
25	Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526.	21.4	443
26	Drosophila Courtship Conditioning As a Measure of Learning and Memory. Journal of Visualized Experiments, 2017, , .	0.3	38
27	High-throughput Analysis of Locomotor Behavior in the Drosophila Island Assay. Journal of Visualized Experiments, 2017, , .	0.3	10
28	Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genetics, 2017, 13, e1006864.	3.5	116
29	Two Algorithms for High-throughput and Multi-parametric Quantification of Drosophila Neuromuscular Junction Morphology. Journal of Visualized Experiments, 2017, , .	0.3	8
30	A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry. PLoS Computational Biology, 2016, 12, e1004823.	3.2	30
31	ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Molecular Psychiatry, 2016, 21, 565-573.	7.9	84
32	De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila. European Journal of Human Genetics, 2016, 24, 1145-1153.	2.8	34
33	Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. American Journal of Human Genetics, 2016, 98, 541-552.	6.2	132
34	Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules. American Journal of Human Genetics, 2016, 98, 149-164.	6.2	270
35	BOD1 Is Required for Cognitive Function in Humans and Drosophila. PLoS Genetics, 2016, 12, e1006022.	3.5	18
36	Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. International Journal of Biochemistry and Cell Biology, 2015, 63, 60-65.	2.8	26

ANNETTE SCHENCK

#	Article	IF	CITATIONS
37	The Epigenetic Regulator G9a Mediates Tolerance to RNA Virus Infection in Drosophila. PLoS Pathogens, 2015, 11, e1004692.	4.7	106
38	Converging evidence does not support <i>GIT1</i> as an ADHD risk gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 492-507.	1.7	18
39	Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Human Molecular Genetics, 2015, 24, 6736-6755.	2.9	64
40	Altered <i>GPM6A/M6</i> Dosage Impairs Cognition and Causes Phenotypes Responsive to Cholesterol in Human and <i>Drosophila</i> . Human Mutation, 2014, 35, 1495-1505.	2.5	31
41	The genetics of cognitive epigenetics. Neuropharmacology, 2014, 80, 83-94.	4.1	78
42	Drosophila models of early onset cognitive disorders and their clinical applications. Neuroscience and Biobehavioral Reviews, 2014, 46, 326-342.	6.1	56
43	Genome sequencing identifies major causes of severe intellectual disability. Nature, 2014, 511, 344-347.	27.8	996
44	Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nature Neuroscience, 2013, 16, 1453-1460.	14.8	283
45	Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Human Molecular Genetics, 2013, 22, 1960-1970.	2.9	137
46	Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila. PLoS Genetics, 2013, 9, e1003911.	3.5	39
47	CEP89 is required for mitochondrial metabolism and neuronal function in man and fly. Human Molecular Genetics, 2013, 22, 3138-3151.	2.9	38
48	<i>GATAD2B</i> loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth in <i>Drosophila</i> . Journal of Medical Genetics, 2013, 50, 507-514.	3.2	63
49	Ubiquitin Ligase HUWE1 Regulates Axon Branching through the Wnt/β-Catenin Pathway in a Drosophila Model for Intellectual Disability. PLoS ONE, 2013, 8, e81791.	2.5	23
50	Mutations in DDHD2, Encoding an Intracellular Phospholipase A1, Cause a Recessive Form of Complex Hereditary Spastic Paraplegia. American Journal of Human Genetics, 2012, 91, 1073-1081.	6.2	159
51	Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet, The, 2012, 380, 1674-1682.	13.7	940
52	Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nature Genetics, 2012, 44, 639-641.	21.4	194
53	Disruption of an EHMT1-Associated Chromatin-Modification Module Causes Intellectual Disability. American Journal of Human Genetics, 2012, 91, 73-82.	6.2	214
54	Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ. PLoS ONE, 2012, 7, e36339.	2.5	21

ANNETTE SCHENCK

#	Article	IF	CITATIONS
55	CYFIP dependent Actin Remodeling controls specific aspects of Drosophila eye morphogenesis. Developmental Biology, 2011, 359, 37-46.	2.0	14
56	Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a. PLoS Biology, 2011, 9, e1000569.	5.6	185
57	CDK19 is disrupted in a female patient with bilateral congenital retinal folds, microcephaly and mild mental retardation. Human Genetics, 2010, 128, 281-291.	3.8	50
58	Protein complexes containing CYFIP/Sra/PIR121 coordinate Arf1 and Rac1 signalling during clathrin–AP-1-coated carrier biogenesis at the TGN. Nature Cell Biology, 2010, 12, 330-340.	10.3	90
59	SLC29A3 gene is mutated in pigmented hypertrichosis with insulin-dependent diabetes mellitus syndrome and interacts with the insulin signaling pathway. Human Molecular Genetics, 2009, 18, 2257-2265.	2.9	100
60	CNTNAP2 and NRXN1 Are Mutated in Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the Level of a Common Synaptic Protein in Drosophila. American Journal of Human Genetics, 2009, 85, 655-666.	6.2	573
61	The Endosomal Protein Appl1 Mediates Akt Substrate Specificity and Cell Survival in Vertebrate Development. Cell, 2008, 133, 486-497.	28.9	307
62	HSPC300 and its role in neuronal connectivity. Neural Development, 2007, 2, 18.	2.4	31
63	Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature, 2006, 442, 814-817.	27.8	289
64	FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Human Molecular Genetics, 2005, 14, 835-844.	2.9	144
65	CYFIP2 is highly abundant in CD4+ cells from multiple sclerosis patients and is involved in T cell adhesion. European Journal of Immunology, 2004, 34, 1217-1227.	2.9	34
66	WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Developmental Biology, 2004, 274, 260-270.	2.0	70
67	Transcriptional regulation of glial cell specification. Developmental Biology, 2003, 255, 138-150.	2.0	31
68	NUFIP1 (nuclear FMRP interacting protein 1) is a nucleocytoplasmic shuttling protein associated with active synaptoneurosomes. Experimental Cell Research, 2003, 289, 95-107.	2.6	53
69	CYFIP/Sra-1 Controls Neuronal Connectivity in Drosophila and Links the Rac1 GTPase Pathway to the Fragile X Protein. Neuron, 2003, 38, 887-898.	8.1	286
70	82-FIP, a novel FMRP (Fragile X Mental Retardation Protein) interacting protein, shows a cell cycle-dependent intracellular localization. Human Molecular Genetics, 2003, 12, 1689-1698.	2.9	62
71	Novel Features of dFMR1, the Drosophila Orthologue of the Fragile X Mental Retardation Protein. Neurobiology of Disease, 2002, 11, 53-63.	4.4	33
72	The Fragile X mental retardation protein. Brain Research Bulletin, 2001, 56, 375-382.	3.0	72

#	Article	IF	CITATIONS
73	A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8844-8849.	7.1	311
74	Assignment of NUFIP1 (Nuclear FMRP Interacting Protein 1) gene to chromosome 13q14 and assignment of a pseudogene to chromosome 6q12. Cytogenetic and Genome Research, 2000, 89, 11-13.	1.1	5
75	A Novel RNA-binding Nuclear Protein That Interacts With the Fragile X Mental Retardation (FMR1) Protein. Human Molecular Genetics, 1999, 8, 2557-2566.	2.9	123