Caitriona M O'driscoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5705391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid-based formulations for intestinal lymphatic delivery. European Journal of Pharmaceutical Sciences, 2002, 15, 405-415.	4.0	332
2	PEGylated gold nanoparticles: polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Advances, 2013, 3, 6085-6094.	3.6	262
3	Biopharmaceutical challenges associated with drugs with low aqueous solubility—The potential impact of lipid-based formulations. Advanced Drug Delivery Reviews, 2008, 60, 617-624.	13.7	252
4	Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. European Journal of Pharmaceutical Sciences, 2008, 35, 383-396.	4.0	220
5	Lipid-based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews, 2016, 106, 337-354.	13.7	204
6	Gold nanoparticles enlighten the future of cancer theranostics. International Journal of Nanomedicine, 2017, Volume 12, 6131-6152.	6.7	202
7	Life in 3D is never flat: 3D models to optimise drug delivery. Journal of Controlled Release, 2015, 215, 39-54.	9.9	184
8	The blood-brain barrier in aging and neurodegeneration. Molecular Psychiatry, 2022, 27, 2659-2673.	7.9	141
9	Cell transfection with polycationic cyclodextrin vectors. European Journal of Pharmaceutical Sciences, 2004, 21, 625-633.	4.0	135
10	Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials, 2012, 33, 7775-7784.	11.4	115
11	Comparison of in vitro tests at various levels of complexity for the prediction of in vivo performance of lipid-based formulations: Case studies with fenofibrate. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 427-437.	4.3	111
12	Pattern recognition receptors—Molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine and Growth Factor Reviews, 2013, 24, 91-104.	7.2	106
13	Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discovery Today, 2011, 16, 203-218.	6.4	103
14	Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics?. Biotechnology Advances, 2011, 29, 402-417.	11.7	98
15	Self-assembling Modified β-Cyclodextrin Nanoparticles as Neuronal siRNA Delivery Vectors: Focus on Huntington's Disease. Molecular Pharmaceutics, 2013, 10, 640-649.	4.6	98
16	The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials, 2015, 66, 53-66.	11.4	90
17	Nanoparticles and the Blood-Brain Barrier: Advancing from In-Vitro Models Towards Therapeutic Significance. Pharmaceutical Research, 2015, 32, 1161-1185.	3.5	90
18	Evaluation of Cellular Uptake and Gene Transfer Efficiency of Pegylated Poly-I-lysine Compacted DNA:Â Implications for Cancer Gene Therapy. Molecular Pharmaceutics, 2006, 3, 644-653.	4.6	88

#	Article	IF	CITATIONS
19	Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Advanced Drug Delivery Reviews, 2021, 171, 289-331.	13.7	84
20	Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Advanced Drug Delivery Reviews, 2016, 106, 367-380.	13.7	83
21	Systemic delivery of therapeutic small interfering RNA using a pH-triggered amphiphilic poly-l-lysine nanocarrier to suppress prostate cancer growth in mice. European Journal of Pharmaceutical Sciences, 2012, 45, 521-532.	4.0	79
22	Food for thought: formulating away the food effect – a PEARRL review. Journal of Pharmacy and Pharmacology, 2019, 71, 510-535.	2.4	75
23	Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. International Journal of Pharmaceutics, 2011, 413, 174-183.	5.2	73
24	The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. British Journal of Pharmacology, 2016, 173, 3041-3079.	5.4	71
25	A comparison of the permeation enhancement potential of simple bile salt and mixed bile salt:fatty acid micellar systems using the CaCo-2 cell culture model. International Journal of Pharmaceutics, 2000, 207, 21-30.	5.2	68
26	A click chemistry route to 2-functionalised PEGylated and cationic β-cyclodextrins: co-formulation opportunities for siRNA delivery. Organic and Biomolecular Chemistry, 2012, 10, 4954.	2.8	68
27	Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. International Journal of Pharmaceutics, 2016, 509, 16-27.	5.2	68
28	Stimulation of Triglyceride-Rich Lipoprotein Secretion by Polysorbate 80: In Vitro and in Vivo Correlation Using Caco-2 Cells and a Cannulated Rat Intestinal Lymphatic Model. Pharmaceutical Research, 2004, 21, 2320-2326.	3.5	67
29	Click-Modified Cyclodextrins as Nonviral Vectors for Neuronal siRNA Delivery. ACS Chemical Neuroscience, 2012, 3, 744-752.	3.5	67
30	A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. International Journal of Pharmaceutics, 2016, 499, 131-145.	5.2	64
31	Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this?. European Journal of Pharmaceutical Sciences, 2019, 133, 190-204.	4.0	64
32	A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharmaceutica Sinica B, 2022, 12, 378-393.	12.0	63
33	The effects of pluronics block copolymers and Cremophor EL on intestinal lipoprotein processing and the potential link with P-glycoprotein in Caco-2 cells. Pharmaceutical Research, 2003, 20, 1085-1092.	3.5	62
34	Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. Journal of Controlled Release, 2013, 168, 28-34.	9.9	61
35	A comparison of intestinal lymphatic transport and systemic bioavailability of saquinavir from three lipid-based formulations in the anaesthetised rat model. Journal of Pharmacy and Pharmacology, 2010, 58, 917-925.	2.4	57
36	Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: In vitro analysis. European Journal of Pharmaceutical Sciences, 2015, 71, 80-92.	4.0	57

#	Article	IF	CITATIONS
37	Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, <i>in Vitro</i> Mechanistic Studies, and <i>ex Vivo</i> Patient Derived Therapeutic Efficacy. Molecular Pharmaceutics, 2017, 14, 940-952.	4.6	56
38	A novel lipid-based solid dispersion for enhancing oral bioavailability of Lycopene – In vivo evaluation using a pig model. International Journal of Pharmaceutics, 2013, 453, 307-314.	5.2	54
39	Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Molecular BioSystems, 2010, 6, 1143-61.	2.9	53
40	Impact of gastrointestinal disease states on oral drug absorption – implications for formulation design – a PEARRL review. Journal of Pharmacy and Pharmacology, 2019, 71, 674-698.	2.4	53
41	Nanostructures of Cationic Amphiphilic Cyclodextrin Complexes with DNA. Biomacromolecules, 2013, 14, 811-817.	5.4	50
42	Highly stable PEGylated gold nanoparticles in water: applications in biology and catalysis. RSC Advances, 2013, 3, 21016.	3.6	49
43	Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2341-2351.	3.3	48
44	Physicochemical, pharmacokinetic and pharmacodynamic analyses of amphiphilic cyclodextrin-based nanoparticles designed to enhance intestinal delivery of insulin. Journal of Controlled Release, 2018, 286, 402-414.	9.9	48
45	Self-Assembled Cationic β-Cyclodextrin Nanostructures for siRNA Delivery. Molecular Pharmaceutics, 2019, 16, 1358-1366.	4.6	47
46	Non-Viral Nanosystems for Gene and Small Interfering RNA Delivery to the Central Nervous System: Formulating the Solution. Journal of Pharmaceutical Sciences, 2013, 102, 3469-3484.	3.3	46
47	PEGylated cyclodextrins as novel siRNA nanosystems: Correlations between polyethylene glycol length and nanoparticle stability. International Journal of Pharmaceutics, 2014, 473, 105-112.	5.2	45
48	Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer – synthesis, physicochemical characterisation and in vitro evaluation. Journal of Materials Chemistry B, 2016, 4, 2242-2252.	5.8	45
49	The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opinion on Therapeutic Targets, 2014, 18, 633-649.	3.4	44
50	Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Molecular Pharmaceutics, 2017, 14, 42-52.	4.6	44
51	Targeted gene delivery to hepatocytes with galactosylated amphiphilic cyclodextrins. Journal of Pharmacy and Pharmacology, 2012, 64, 1063-1073.	2.4	43
52	Anisamide-targeted PEGylated gold nanoparticles designed to target prostate cancer mediate: Enhanced systemic exposure of siRNA, tumour growth suppression and a synergistic therapeutic response in combination with paclitaxel in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 137, 56-67.	4.3	43
53	The effect of mixed micellar systems, bile salt/fatty acids, on the solubility and intestinal absorption of clofazimine (B663) in the anaesthetised rat. International Journal of Pharmaceutics, 1994, 109, 147-154.	5.2	42
54	Bioavailability of lycopene in the rat: the role of intestinal lymphatic transport. Journal of Pharmacy and Pharmacology, 2010, 62, 323-331.	2.4	41

#	Article	IF	CITATIONS
55	Delivering a disease-modifying treatment for Huntington's disease. Drug Discovery Today, 2015, 20, 50-64.	6.4	39
56	Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnology Advances, 2014, 32, 1396-1409.	11.7	38
57	In Vitro Investigations of the Efficacy of Cyclodextrin-siRNA Complexes Modified with Lipid-PEG-Octaarginine: Towards a Formulation Strategy for Non-viral Neuronal siRNA Delivery. Pharmaceutical Research, 2013, 30, 1086-1098.	3.5	36
58	Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer?. Trends in Molecular Medicine, 2013, 19, 250-261.	6.7	36
59	Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials, 2014, 35, 489-499.	11.4	36
60	Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery. Colloids and Surfaces B: Biointerfaces, 2015, 135, 604-612.	5.0	36
61	Targeted Drug Delivery via Folate Receptors for the Treatment of Brain Cancer: Can the Promise Deliver?. Journal of Pharmaceutical Sciences, 2017, 106, 3413-3420.	3.3	36
62	Carcinoembryonic antigen (CEACAM) family members and Inflammatory Bowel Disease. Cytokine and Growth Factor Reviews, 2019, 47, 21-31.	7.2	36
63	Scaffoldâ€Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair. Journal of Orthopaedic Research, 2019, 37, 1671-1680.	2.3	34
64	Mechanistic studies on nonviral gene delivery to the intestine using in vitro differentiated cell culture models and an in vivo rat intestinal loop. Pharmaceutical Research, 2003, 20, 569-575.	3.5	33
65	Cationic and PEGylated Amphiphilic Cyclodextrins: Co-Formulation Opportunities for Neuronal Sirna Delivery. PLoS ONE, 2013, 8, e66413.	2.5	32
66	Early-Stage Development of Novel Cyclodextrin-siRNA Nanocomplexes Allows for Successful Postnebulization Transfection of Bronchial Epithelial Cells. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2014, 27, 466-477.	1.4	32
67	Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Molecular Pharmaceutics, 2021, 18, 1491-1506.	4.6	32
68	Oligonucleotide conjugates – Candidates for gene silencing therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 321-340.	4.3	31
69	Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. International Journal of Pharmaceutics, 2016, 511, 1058-1069.	5.2	30
70	Best practices in current models mimicking drug permeability in the gastrointestinal tract - An UNGAP review. European Journal of Pharmaceutical Sciences, 2022, 170, 106098.	4.0	29
71	Amphiphilic polyallylamine based polymeric micelles for siRNA delivery to the gastrointestinal tract: In vitro investigations. International Journal of Pharmaceutics, 2013, 447, 150-157.	5.2	28
72	Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Advances, 2015, 5, 17862-17871.	3.6	28

#	Article	IF	CITATIONS
73	Lipidic dispersion to reduce food dependent oral bioavailability of fenofibrate: In vitro, in vivo and in silico assessments. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 207-216.	4.3	28
74	Exploring the Impact of Drug Properties on the Extent of Intestinal Lymphatic Transport - In Vitro and In Vivo Studies. Pharmaceutical Research, 2015, 32, 1817-1829.	3.5	28
75	The relationship between rat intestinal permeability and hydrophilic probe size. Pharmaceutical Research, 1996, 13, 1554-1558.	3.5	27
76	Opportunities and challenges for oral delivery of hydrophobic versus hydrophilic peptide and protein-like drugs using lipid-based technologies. Therapeutic Delivery, 2011, 2, 1633-1653.	2.2	27
77	Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours. International Journal of Pharmaceutics, 2017, 532, 511-518.	5.2	27
78	Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy. Nano Research, 2017, 10, 3496-3508.	10.4	27
79	Cyclodextrin-siRNA conjugates as versatile gene silencing agents. European Journal of Pharmaceutical Sciences, 2018, 114, 30-37.	4.0	27
80	Characterisation of cationic amphiphilic cyclodextrins for neuronal delivery of siRNA: Effect of reversing primary and secondary face modifications. European Journal of Pharmaceutical Sciences, 2012, 47, 896-903.	4.0	26
81	>Development of anisamide-targeted PEGylated gold nanorods to deliver epirubicin for chemo-photothermal therapy in tumor-bearing mice. International Journal of Nanomedicine, 2019, Volume 14, 1817-1833.	6.7	26
82	Cyclodextrin mediated delivery of NF-κB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro. Gene Therapy, 2015, 22, 802-810.	4.5	25
83	Nanodelivery of immunogenic cell death-inducers for cancer immunotherapy. Drug Discovery Today, 2021, 26, 651-662.	6.4	23
84	A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. International Journal of Pharmaceutics, 2021, 606, 120888.	5.2	23
85	Biomimetic gold nanocomplexes for gene knockdown: Will gold deliver dividends for small interfering RNA nanomedicines?. Nano Research, 2015, 8, 3111-3140.	10.4	22
86	Regulation of CEACAM Family Members by IBD-Associated Triggers in Intestinal Epithelial Cells, Their Correlation to Inflammation and Relevance to IBD Pathogenesis. Frontiers in Immunology, 2021, 12, 655960.	4.8	22
87	The effect of simple micellar systems on the solubility and intestinal absorption of clofazimine (B663) in the anaesthetised rat. International Journal of Pharmaceutics, 1994, 105, 137-146.	5.2	21
88	Quantitative estimation of the effects of bile salt surfactant systems on insulin stability and permeability in the rat intestine using a mass balance model. Journal of Pharmacy and Pharmacology, 2010, 57, 169-175.	2.4	21
89	The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. Journal of Controlled Release, 2018, 286, 154-166.	9.9	19
90	A Retrospective Biopharmaceutical Analysis of >800 Approved Oral Drug Products: Are Drug Properties of Solid Dispersions and Lipid-Based Formulations Distinctive?. Journal of Pharmaceutical Sciences, 2020, 109, 3248-3261.	3.3	19

#	Article	lF	CITATIONS
91	7-formyl-10-methylisoellipticine, a novel ellipticine derivative, induces mitochondrial reactive oxygen species (ROS) and shows anti-leukaemic activity in mice. Investigational New Drugs, 2016, 34, 15-23.	2.6	18
92	Gastrointestinal gene delivery by cyclodextrins – In vitro quantification of extracellular barriers. International Journal of Pharmaceutics, 2013, 456, 390-399.	5.2	17
93	Modified cyclodextrin-based nanoparticles mediated delivery of siRNA for huntingtin gene silencing across an in vitro BBB model. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 309-318.	4.3	17
94	Cyclodextrins for Non-Viral Gene and siRNA Delivery. Pharmaceutical Nanotechnology, 2012, 1, 6-14.	1.5	16
95	RNA interference for multiple myeloma therapy: targeting signal transduction pathways. Expert Opinion on Therapeutic Targets, 2016, 20, 107-121.	3.4	16
96	Mesoporous silica-based dosage forms improve bioavailability of poorly soluble drugs in pigs: case example fenofibrate. Journal of Pharmacy and Pharmacology, 2017, 69, 1284-1292.	2.4	14
97	Blood and lymph transport of DDT after oral and parenteral administration to anaesthetised rats. International Journal of Pharmaceutics, 1991, 73, 177-183.	5.2	12
98	An Examination of the Effect of Intestinal First Pass Extraction on Intestinal Lymphatic Transport of Saquinavir in the Rat. Pharmaceutical Research, 2008, 25, 1125-1133.	3.5	12
99	Biophysical and Structural Characterisation of Nucleic Acid Complexes with Modified Cyclodextrins Using Circular Dichroism. Journal of Pharmaceutical Sciences, 2014, 103, 1346-1355.	3.3	12
100	Poly(ethylene glycol)-Based Peptidomimetic "PEGtide―of Oligo-Arginine Allows for Efficient siRNA Transfection and Gene Inhibition. ACS Omega, 2019, 4, 10078-10088.	3.5	11
101	Pre-Clinical Evaluation of a Modified Cyclodextrin-Based Nanoparticle for Intestinal Delivery of Liraglutide. Journal of Pharmaceutical Sciences, 2021, 110, 292-300.	3.3	9
102	Gastrointestinal diseases and their impact on drug solubility: Crohn's disease. European Journal of Pharmaceutical Sciences, 2020, 152, 105459.	4.0	8
103	Predicting budesonide performance in healthy subjects and patients with Crohn's disease using biorelevant in vitro dissolution testing and PBPK modeling. European Journal of Pharmaceutical Sciences, 2021, 157, 105617.	4.0	8
104	Investigating the Impact of Crohn's Disease on the Bioaccessibility of a Lipid-Based Formulation with an In Vitro Dynamic Gastrointestinal Model. Molecular Pharmaceutics, 2021, 18, 1530-1543.	4.6	8
105	RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. Molecular BioSystems, 2015, 11, 2635-2657.	2.9	7
106	Estimation of absorption parameters from the non-steady-state phase in the rat gut perfusion model. Journal of Pharmacy and Pharmacology, 2010, 55, 487-493.	2.4	5
107	In Vitro and In Silico ADME Prediction. , 2018, , 301-330.		5
108	Gastrointestinal diseases and their impact on drug solubility: Ulcerative Colitis. European Journal of Pharmaceutical Sciences, 2020, 152, 105458.	4.0	5

#	Article	IF	CITATIONS
109	Clofazimine. Analytical Profiles of Drug Substances and Excipients, 1992, , 75-108.	0.0	4
110	Gastrointestinal diseases and their impact on drug solubility: Celiac disease. European Journal of Pharmaceutical Sciences, 2020, 152, 105460.	4.0	4
111	Chapter 2.1. Nanostructures Overcoming the Intestinal Barrier: Physiological Considerations and Mechanistic Issues. RSC Drug Discovery Series, 2012, , 39-62.	0.3	4
112	NANOSTRUCTURES OVERCOMING THE INTESTINAL BARRIER: DRUG DELIVERY STRATEGIES. RSC Drug Discovery Series, 2012, , 63-90.	0.3	3
113	Long-term stability of insulin glulisine loaded nanoparticles formulated using an amphiphilic cyclodextrin and designed for intestinal delivery. Drug Development and Industrial Pharmacy, 2020, 46, 1073-1079.	2.0	2
114	Carbenoxolone Sodium. Analytical Profiles of Drug Substances and Excipients, 1996, 24, 1-43.	0.0	1