Yimin Wei

List of Publications by Year in descending order

[^0]

Fourth-order tensor Riccati equations with the Einstein product. Linear and Multilinear Algebra,
$2022,70,1831-1853$.

TLS-EM algorithm of Mixture Density Models for exponential families. Journal of Computational and Applied Mathematics, 2022, 403, 113829.

Predefined-time convergent neural networks for solving the time-varying nonsingular multi-linear tensor equations. Neurocomputing, 2022, 472, 68-84.

Multidimensional Total Least Squares Problem with Linear Equality Constraints. SIAM Journal on Matrix Analysis and Applications, 2022, 43, 124-150.

T-square tensorsâ€"Part I: inequalities. Computational and Applied Mathematics, 2022, 41, 1.
1.0

Stochastic Tensor Complementarity Problem with Discrete Distribution. Journal of Optimization
Theory and Applications, 2022, 192, 912-929.

T-product tensorsâ€"part II: tail bounds for sums of random T-product tensors. Computational and
$7 \quad$ Applied Mathematics, 2022, 41, 1.

Tensor CUR Decomposition under T-Product and Its Perturbation. Numerical Functional Analysis and Optimization, 2022, 43, 698-722.
0.6

12

9 Condition numbers of multidimensional mixed least squares-total least squares problems. Applied
$9 \quad$ Numerical Mathematics, 2022, 178, 52-68.

Fast randomized tensor singular value thresholding for lowâ€ fank tensor optimization. Numerical
Linear Algebra With Applications, 2022, 29, .

11 Componentwise perturbation analysis for the generalized Schur decomposition. Calcolo, 2022, 59, .
0.6

Randomized Kaczmarz methods for tensor complementarity problems. Computational Optimization and Applications, 2022, 82, 595-615.

Perturbations of the Tcur Decomposition for Tensor Valued Data in the Tucker Format. Journal of Optimization Theory and Applications, 2022, 194, 852-877.

An innovative, low-cost and environment-friendly approach by using a deep eutectic solvent as the
14 water substitute to minimize waste in the textile industry and for better clothing performance. Green
4.6

Chemistry, 2022, 24, 5904-5917.
15 General tail bounds for random tensors summation: Majorization approach. Journal of Computational and Applied Mathematics, 2022, 416, 114533.

T-Jordan Canonical Form and T-Drazin Inverse Based on the T-Product. Communications on Applied Mathematics and Computation, 2021, 3, 201-220.
0.7

and Multilinear Algebra, 2021, 69, 752-770.
$0.5 \quad 6$
Stochastic structured tensors to stochastic complementarity problems. Computational Optimization
and Applications, 2020, 75, 649-668.
$0.9 \quad 17$

M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity. Applied
1.5

Preconditioned tensor splitting AOR iterative methods for â,„â€tensor equations. Numerical Linear

Special Issue Research on Generalized Inverses in China. Numerical Functional Analysis and
Optimization, 2020, 41, 1669-1671.

The Computation of Low Multilinear Rank Approximations of Tensors via Power Scheme and Random Projection. SIAM Journal on Matrix Analysis and Applications, 2020, 41, 605-636.

Parallel isotope differential modeling for instationary 13C fluxomics at the genome scale.
Biotechnology for Biofuels, 2020, 13, 103.

Multiplicative Algorithms for Symmetric Nonnegative Tensor Factorizations and Its Applications.
Journal of Scientific Computing, 2020, 83, 1.

Computing Time-Varying ML-Weighted Pseudoinverse by the Zhang Neural Networks. Numerical
Functional Analysis and Optimization, 2020, 41, 1672-1693.

Tensor neural network models for tensor singular value decompositions. Computational
Optimization and Applications, 2020, 75, 753-777.
0.9

34

43 Theory and Computation of Complex Tensors and its Applications. , 2020, , .
29

Time-varying generalized tensor eigenanalysis via Zhang neural networks. Neurocomputing, 2020, 407, 465-479.

Randomized Algorithms., 2020, , 215-246.

46 Tensor Complementarity Problems. , 2020, , 97-115.

47 The Pseudo-Spectrum Theory. , 2020, , 19-49.
0

48 US- and U-Eigenpairs of Complex Tensors. , 2020, , 187-214.

Randomized algorithms for the approximations of Tucker and the tensor train decompositions.
Advances in Computational Mathematics, 2019, 45, 395-428.

Z-singular value and Z-singular value inclusion sets for tensors. Japan Journal of Industrial and
Applied Mathematics, 2019, 36, 1055-1087.

Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors. Computational and Applied Mathematics, 2019, 38, 1.

Z-eigenvalues based structured tensors: \$\$mathcal $\{\mathrm{M}\}$ _ $2 \$ \$$-tensors and strong $\$$ mathcal
\{M\}_z\$\$-tensors. Computational and Applied Mathematics, 2019, 38, 1.

An Application of Computer Algebra and Dynamical Systems. Lecture Notes in Computer Science, 2019, ,
225-236.

The modified method of fundamental solutions for exterior problems of the Helmholtz equation; spurious eigenvalues and their removals. Applied Numerical Mathematics, 2019, 145, 236-260.

56	Neural networks based approach solving multi-linear systems with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.gif" overflow="scroll"><mml:mi mathvariant="bold-script">M</mml:mi></mml:math>-tensors. Neurocomputing, 2019, 351, 33-42.
57	The method of fundamental solutions for the Helmholtz equation. Applied Numerical Mathematics, 2019, 135, 510-536.
58	An infinity norm bound for the inverse of Dashnicâ€"Zusmanovich type matrices with appl Linear Algebra and Its Applications, 2019, 565, 99-122.

```
73 Perturbation Analysis of the Moore-Penrose Inverse and the Weighted Moore-Penrose Inverse.
Developments in Mathematics, 2018, 263-289.

74 Geometric measures of entanglement in multipartite pure states via complex-valued neural networks.
0

Generalized Inverses of Polynomial Matrices. Developments in Mathematics, 2018, , 307-316.
0.20

76 Generalized Inverses: Theory and Computations. Developments in Mathematics, 2018, , .
Adaptive algorithms for computing the principal Takagi vector of a complex symmetric matrix.
Neurocomputing \(2018,317,79-87\).
Neurocomputing, 2018, 317, 79-87.
\(3.5 \quad 4\)

78 Equation Solving Generalized Inverses. Developments in Mathematics, 2018, , 1-64.
\(0.2 \quad 2\)
79 Best Rank-One Approximation of Fourth-Order Partially Symmetric Tensors by Neural Network.
Numerical Mathematics, 2018, 11, 673-700.
\(0.6 \quad 12\)
\$M\$-eigenvalues of the Riemann curvature tensor. Communications in Mathematical Sciences, 2018, 16, 2301-2315.
\(0.5 \quad 5\)
Reverse Order and Forward Order Laws for \$\$A_\{T,S\}^\{(2)\}\$\$. Developments in Mathematics, 2018,
153-174.
83 Computational Aspects. Developments in Mathematics, 2018, , 175-224.
0.20
84 Drazin Inverse. Developments in Mathematics, 2018, , 65-90.0.20
85 Generalization of the Cramerâ \(€^{T M}\) s Rule andÂthe Minors of the Generalized Inverses. Developments in Mathematics, 2018, , 91-151.
Parallel Algorithms for Computing theÂGeneralized Inverses. Developments in Mathematics, 2018, ,
233-261.0.2
Inequalities on Generalized Tensor Functions with Diagonalizable and Symmetric Positive Definite Tensors. Statistics, Optimization and Information Computing, 2018, 6, .Application. Journal of the Operations Research Society of China, 2017, 5, 65-82.

Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein
product. Frontiers of Mathematics in China, 2017, 12, 1319-1337.
Mixed and componentwise condition numbers for matrix decompositions. Theoretical Computer Science, 2017, 681, 199-216.

A contribution to perturbation analysis for total least squares problems. Numerical Algorithms, 2017, 75, 381-395.

Neural networks for computing best rank-one approximations of tensors and its applications.
Neurocomputing, 2017, 267, 114-133.

Iterative algorithms for computing US- and U-eigenpairs of complex tensors. Journal of
Computational and Applied Mathematics, 2017, 317, 547-564.

A fast algorithm for solving circulant tensor systems. Linear and Multilinear Algebra, 2017, 65,
1894-1904.

Algebraic Properties of Generalized Inverses. Developments in Mathematics, 2017, , .
0.2

Completions of Operator Matrices and Generalized Inverses. Developments in Mathematics, 2017, , 51-88.

Condition Numbers of the Multidimensional Total Least Squares Problem. SIAM Journal on Matrix
Analysis and Applications, 2017, 38, 924-948.

Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems. Linear Algebra and Its
Applications, 2017, 533, 536-572.

101 Acute perturbation of the group inverse. Linear Algebra and Its Applications, 2017, 534, 135-157.
0.4

18

102 Tensor and hypergraph. Frontiers of Mathematics in China, 2017, 12, 1277-1277.
0.4

1

103 Definitions and Motivations. Developments in Mathematics, 2017, , 1-10.
0.2

0

104 Drazin Inverse of a \$\$2 imes 2\$\$ Block Matrix. Developments in Mathematics, 2017, , 109-158.
0.2
o
105 Additive Results for the Drazin Inverse. Developments in Mathematics, 2017, , 159-192. ..... 0.2

0

106 Small sample statistical condition estimation for the total least squares problem. Numerical Algorithms, 2017, 75, 435-455.

109 Numerical solution to a linear equation with tensor product structure. Numerical Linear Algebra
With Applications, 2017, 24, e2106.
111 Reverse Order Law. Developments in Mathematics, 2017, , 11-50.
Mixed, Componentwise Condition Numbers and Small Sample Statistical Condition Estimation for112 Generalized Spectral Projections and Matrix Sign Functions. Taiwanese Journal of Mathematics, 2016,
113 Tikhonov Regularization and Randomized GSVD. SIAM Journal on Matrix Analysis and Applications, ..... 0.7 ..... 43
114 Linear algebra and multilinear algebra. Frontiers of Mathematics in China, 2016, 11, 509-510.\(0.4 \quad 1\)
115 Neural network approach to computing outer inverses based on the full rank representation. Linear ..... 0.4 ..... 16
116 Recurrent neural network for computation of generalized eigenvalue problem with real3.513diagonalizable matrix pair and its applications. Neurocomputing, 2016, 216, 230-241.117 Complex Neural Network Models for Time-Varying Drazin Inverse. Neural Computation, 2016, 28,2790-2824.
Tensor logarithmic norm and its applications. Numerical Linear Algebra With Applications, 2016, 23,
119 Structured condition numbers of structured Tikhonov regularization problem and their estimations.Journal of Computational and Applied Mathematics, 2016, 308, 276-300.
0.3 ..... 4
120 Convergence of Rumpâ \(€^{\text {TM }}\) s method for coThe stability of formulae of the Gohbergâ€"Semenculâ€"Trench type for Mooreâ€"Penrose and group121 inverses of Toeplitz matrices. Linear Algebra and Its Applications, 2016, 498, 117-135.
0.4 ..... 13
122 Recurrent Neural Network for Computing Outer Inverse. Neural Computation, 2016, 28, 970-998.1.330
Solving Multi-linear Systems with \$\$mathcal \{M\}\$ M -Tensors. Journal of Scientific Computing, 2016, ..... 1.1 ..... 145

127 New rigorous perturbation bounds for the Cholesky-like factorization of skew-symmetric matrix.
Linear Algebra and Its Applications, 2016, 491, 83-100.

On matrices whose Moore-Penrose inverses are ray unique. Linear and Multilinear Algebra, 2016, 64, 1236-1243.

Mooreâ€"Penrose inverse of tensors via Einstein product. Linear and Multilinear Algebra, 2016, 64, 686-698.

130 â,„-tensors and nonsingular â,„-tensors. Frontiers of Mathematics in China, 2016, 11, 557-575.
0.4
0.4

Multilinear Systems with <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML"
132 altimg="si424.gif" overflow="scroll"><mml:mi
mathvariant="bold-script">â,,³</mml:mi></mml:math>-Tensors., 2016, , 97-124.

133 Fast Tensor-Vector Products. , 2016, , 39-57.
0

134 Generalized Tensor Eigenvalue Problems. , 2016, , 11-36.

NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE. Journal of Applied
Analysis and Computation, 2016, 6, 216-226.

Introduction and Preliminaries. , 2016, , 3-10.

An inexact shiftâ€endâ€invert Arnoldi algorithm for Toeplitz matrix exponential. Numerical Linear Algebra With Applications, 2015, 22, 777-792.

Partial orders on <mml:math xmlns:mm/="http:/|www.w3.org/1998/Math/MathML" altimg="sil.gif"
139 overflow="scroll" > < mml:mi mathvariant="script"> B </mml:mi> <mml:mo
stretchy="false" > (</mml:mo><mml:mi mathvariant="script">H</mml:mi><mml:mo) Tj ETQq1 10.784314 rgBT/Overlock 10 tif 5025

Fast Hankel tensorâ€"vector product and its application to exponential data fitting. Numerical Linear
Algebra With Applications, 2015, 22, 814-832.

Generalized Tensor Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 2015, 36,
1073-1099.

Boundary methods for Dirichlet problems of Laplace \(x^{3}\) s equation in elliptic domains with elliptic holes. Engineering Analysis With Boundary Elements, 2015, 61, 91-103.

Homotopy for Rational Riccati Equations Arising in Stochastic Optimal Control. SIAM Journal of
Scientific Computing, 2015, 37, B103-B125.
1.3145 With Applications, 2015, 22, 1115-1130.
0.9 ..... 12
1.43
146 Characterizations and representations of the ( \(\mathrm{P}, \mathrm{Q}\) )-outer generalized inverse. Applied Mathematics and Computation, 2015, 269, 432-442.
Recurrent Neural Network Approach Based on the Integral Representation of the Drazin Inverse.
Neural Computation, 2015, 27, 2107-2131.
On an iterative method for solving the least squares problem of rank-deficient systems. International
148 Journal of Computer Mathematics, 2015, 92, 532-541.
\(1.0 \quad 1\)
149 Perturbation Bound for the Eigenvalues of a Singular Diagonalizable Matrix. East Asian Journal on
Applied Mathematics, 2014, 4, 88-94.
\(0.4 \quad 0\)
150 Mixed and componentwise condition numbers for matrix decompositions. , 2014, , .
1
151 Stability analysis for singularly perturbed differential equations by the upwind difference scheme.
Numerical Methods for Partial Differential Equations, 2014, 30, 1595-1613.
2.0
0

\section*{152 Semi-convergence analysis of Uzawa methods for singular saddle point problems. Journal of} Computational and Applied Mathematics, 2014, 255, 334-345.
1.1
65
153 E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear Algebra and ItsApplications, 2014, 459, 397-403.
Generalized exact boundary synchronization for a coupled system of wave equations. Discrete and
155 Continuous Dynamical Systems, 2014, 34, 2893-2905.
0.523
156 The Diagonal Reduction Algorithm Using Fast Givens. , 2014, , 453-465. ..... 1
157 On condition numbers for Mooreâ€"Penrose inverse and linear least squares problem involving 0.9 ..... 13
Kronecker products. Numerical Linear Algebra With Applications, 2013, 20, 44-59.A note on stable perturbations of Mooreâ€"Penrose inverses. Numerical Linear Algebra With
163

> A preconditioned conjugate gradient algorithm for GeneRank with application to microarray data mining. Data Mining and Knowledge Discovery, 2013, 26, 27-56.
2.49

Gradient methods for computing the Drazin-inverse solution. Journal of Computational and Applied
1.1

15
Mathematics, 2013, 253, 255-263.

\section*{164}

165 Accelerating the Arnoldi-Type Algorithm for the PageRank Problem and the ProteinRank Problem.
Journal of Scientific Computing, 2013, 57, 74-104.
166 Some results on the Drazin inverse of anti-triangular matrices. Linear and Multilinear Algebra, 2013,
61, 1568-1576.
\(165 \begin{aligned} & \text { Accelerating the Arnoldi-Type Algorithm for the PageRank Problem and the ProteinRank Problem. } \\ & \text { Journal of Scientific Computing, 2013, 57, 74-104. }\end{aligned}\)
166 Some results on the Drazin inverse of anti-triangular matrices. Linear and Multilinear Algebra, 2013,
61, 1568-1576.
1.1
\(165 \begin{aligned} & \text { Accelerating the Arnoldi-Type Algorithm for the PageRank Problem and the ProteinRank Problem. } \\ & \text { Journal of Scientific Computing, 2013, 57, 74-104. }\end{aligned}\)
166 Some results on the Drazin inverse of anti-triangular matrices. Linear and Multilinear Algebra, 2013,
61, 1568-1576.
0.5

10
165 Accelerating the Arnoldi-Type Algorithm for the PageRank Problem and the ProteinRank Problem.
Journal of Scientific Computing, 2013,57, 74-104.
166 Some results on the Drazin inverse of anti-triangular matrices. Linear and Multilinear Algebra, 2013,
\(61,1568-1576\).
13
\begin{tabular}{ll|l}
1.1 & 13
\end{tabular}
Towards backward perturbation bounds for approximate dual Krylov subspaces. BIT Numerical
Mathematics, 2013, 53, 225-239.
\(1.0 \quad 2\)

168 The stationary iterations revisited. Numerical Algebra, Control and Optimization, 2013, 3, 261-270.
1.0

0

169 On the Level-2 Condition Number for Mooreâ€"Penrose Inverse in Hilbert Space. , 2013, , 159-169.
171 Integral and limit representations of the outer inverse in Banach space. Linear and Multilinear ..... 0.5
Algebra, 2012, 60, 333-347.31
```

Lumping algorithms for computing Coogleâ€ }\mp@subsup{\mathbb{TM}}{S}{}\mathrm{ PageRank and its derivative, with attention to
unreferenced nodes. Information Retrieval, 2012, 15, 503-526.

```

Relationship between the characteristic polynomial and the spectrum of a diagonalizable matrix and
0.5

3

\section*{those of its low-rank update. Linear and Multilinear Algebra, 2012, 60, 967-978.}

174

Group inverse for block matrices and some related sign analysis. Linear and Multilinear Algebra, 2012,
0.5

28
60, 669-681.

176 On disjoint range operators in a Hilbert space. Linear Algebra and Its Applications, 2012, 437, 2366-2385.
0.43
177 \begin{tabular}{l} 
HKZ and Minkowski Reduction Algorithms for Lattice-Reduction-Aided MIMO Detection. IEEE \\
Transactions on Signal Processing, 2012, 60, 5963-5976.
\end{tabular}
178 \begin{tabular}{l} 
A Diagonal Lattice Reduction Algorithm for MIMO Detection. IEEE Signal Processing Letters, 2012, 19, \\
311-314.
\end{tabular}
3.2

33

\section*{311-314.}

Additive property of Drazin invertibility of elements in a ring. Linear and Multilinear Algebra, 2012, 60,
903-910.
\begin{tabular}{|c|c|c|c|}
\hline 181 & A sharp version of Bauerâ \(€^{\text {"Fikikeâ }} €^{T M}\) s theorem. Journal of Computational and Applied Mathematics, 2012, 236, 3218-3227. & 1.1 & 7 \\
\hline 182 & Effective condition number for weighted linear least squares problems and applications to the Trefftz method. Engineering Analysis With Boundary Elements, 2012, 36, 53-62. & 2.0 & 6 \\
\hline 183 & Properties of the combinations of commutative idempotents. Linear Algebra and Its Applications, 2012, 436, 202-221. & 0.4 & 6 \\
\hline 184 & Explicit characterization of the Drazin index. Linear Algebra and Its Applications, 2012, 436, 2273-2298. & 0.4 & 10 \\
\hline 185 & On invertibility of combinations of k-potent operators. Linear Algebra and Its Applications, 2012, 437, 376-387. & 0.4 & 5 \\
\hline 186 & Some block matrices with signed Drazin inverses. Linear Algebra and Its Applications, 2012, 437, 1779-1792. & 0.4 & 17 \\
\hline 187 & Model-order reduction of <i>k</i>th order MIMO dynamical systems using block<i>k</i>th order Krylov subspaces. International Journal of Computer Mathematics, 2011, 88, 150-162. & 1.0 & 2 \\
\hline
\end{tabular}
188 Estimates of the spectral condition number. Linear and Multilinear Algebra, 2011, 59, 249-260.
189 A note on additive results for the Drazin inverse. Linear and Multilinear Algebra, 2011, 59, 1319-1329. ..... 0.5 ..... 26
190 Convergence of General Nonstationary Iterative Methods for Solving Singular Linear Equations. SIAM Iournal on Matrix Analysis and Applications, 2011, 32, 72-89.xmins:xocs= nttp://www.elsevier.com/xmi/xocs/ata xmins:Xs= nttp:|/www.ws.org/zu01/xivilschema191 xmlns:ja="http:/|www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"0.431xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"
192 Condition numbers and perturbation analysis for the Tikhonov regularization of discrete ill-posed problems. Numerical Linear Algebra With Applications, 2011, 18, 87-103.0.913Illâ€conditioning of the truncated singular value decomposition, Tikhonov regularization and their
193 applications to numerical partial differential equations. Numerical Linear Algebra With Applications,0.929
2011, 18, 205-221.Stability analysis via condition number and effective condition number for the first kind boundary194 integral equations by advanced quadrature methods, a comparison. Engineering Analysis With2.01Boundary Elements, 2011, 35, 667-677.195 New additive results for the generalized Drazin inverse. Journal of Mathematical Analysis and0.538Applications, 2010, 370, 313-321.

201 Krylov Subspace Algorithms for Computing GeneRank for the Analysis of Microarray Data Mining.

202 Arnoldi versus GMRES for computing pageRank. ACM Transactions on Information Systems, 2010, 28,

205 Some results on the generalized Drazin inverse of operator matrices. Linear and Multilinear Algebra, 2010, 58, 503-521.
2010, 58, 503-521.
\(1.0 \quad 0\)
206 Condition number of singular value: zero-structured and patterned case. International Journal of Computer Mathematics, 2010, 87, 391-403.

PERTURBATION ANALYSIS OF THE MOORE-PENROSE INVERSE FOR A CLASS OF BOUNDED OPERATORS IN HILBERT SPACES. Journal of the Korean Mathematical Society, 2010, 47, 831-843.
0.4

5

\footnotetext{
Matrix Sign Function Methods for Solving Projected Generalized Continuous-Time Sylvester
Matrix Sign Function Methods for Solving Projected Generalized Continuous-Time Sylvester
Equations. IEEE Transactions on Automatic Control, 2010, 55, 2629-2634.
}

6

A generalization of the Bottâe"Duffin inverse and its applications. Numerical Linear Algebra With
210 Applications, 2009, 16, 173-196.
0.9
\(-3\)
211 Order reduction of bilinear MIMO dynamical systems using new block Krylov subspaces. Computers
\(1.4 \quad 24\)
and Mathematics With Applications, 2009, 58, 1093-1102.

Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue
1.1

6 problems. Numerical Algorithms, 2009, 50, 17-32.

Perturbation analysis and condition numbers of scaled total least squares problems. Numerical
1.1

30
213 Algorithms, 2009, 51, 381-399.

A Lanczos bidiagonalization algorithm for Hankel matrices. Linear Algebra and Its Applications, 2009,
430, 1531-1543.

Representations for the Drazin inverse of the sum <mml:math its applications. Linear Algebra and Its Applications, 2009, 430, 438-454.
Characterizations and representations of the Drazin inverse involving idempotents. Linear Algebra
and Its Applications, 2009, 431, 1526-1538.
Spectral properties of sums of certain Kronecker products. Linear Algebra and Its Applications, 2009,
219 A note on the Drazin inverse of an anti-triangular matrix. Linear Algebra and Its Applications, 2009, 431, 0.4 ..... 48
1910-1922.
1.1 ..... 16
Perturbation analysis for a class of fuzzy linear systems. Journal of Computational and Applied 220 Mathematics, 2009, 224, 54-65.
On computing PageRank via lumping the Google matrix. Journal of Computational and Applied 1.1 ..... 39
221 Mathematics, 2009, 224, 702-708.
1.1 ..... 0
On solution uniqueness of elliptic boundary value problems. Journal of Computational and Applied 222 On solution uniqueness of elliptic Mathematics, 2009, 233, 293-307.
223 Perturbation analysis a 3.0 ..... 17
224 Determinantal representation of the generalized inversei \(A \_\{T, S\}^{\wedge}\{(2)\}\) over integral domains and itsapplications. Linear and Multilinear Algebra, 2009, 57, 547-559.
0.5 ..... 34
225 The Representation and Computational Procedures for the Generalized Inverse of an OperatorAin ..... 0.6 ..... 17
Hilbert Spaces. Numerical Functional Analysis and Optimization, 2009, 30, 168-182.
1.4 ..... 30 ..... 1.4
Iterative solutions of coupled discrete Markovian jump Lyapunov equations. Computers and 226 Iterative solutions of coupled discrete Markovian jump
227 Perturbation analysis for best approximation and the polar factor by subunitary matrices. Frontiers of Mathematics in China, 2008, 3, 523-534. 227
0.4 ..... 0
Normwise, mixed and componentwise condition numbers of nonsymmetric algebraic Riccati equations. Journal of Applied Mathematics and Computing, 2008, 27, 137-147. 1.2 ..... 5
228On the convergence of subproper (multi)-splitting methods for solving rectangular linear systems.229 Calcolo, 2008, 45, 17-33.
0.6 ..... 2
230 A note on the perturbation of an outer inverse. Calcolo, 2008, 45, 263-273.0.68
231 A survey and some extensions of T. Chanâ \(€^{T M}\) s preconditioner. Linear Algebra and Its Applications, 2008, 0.4 ..... 11
428, 403-412.A note on the scaled total least squares problem. Linear Algebra and Its Applications, 2008, 428,

239 Condition numbers for linear systems and Kronecker product linear systems with multiple right-hand sides. International Journal of Computer Mathematics, 2007, 84, 1805-1817.

On Normwise Structured Backward Errors for Saddle Point Systems. SIAM Journal on Matrix Analysis241 Condition Numbers of the Generalized Sylvester Equation. IEEE Transactions on Automatic Control,
242 A short note on singular values of optimal and superoptimal preconditioned matrices. InternationalJournal of Computer Mathematics, 2007, 84, 1261-1263.
243 A Powerâ€"Arnoldi algorithm for computing PageRank. Numerical Linear Algebra With Applications, 2007, 14, 521-546.
\(245 \begin{aligned} & \text { On Frobenius normwise condition numbers for Mooreấe"Penrose inverse a } \\ & \text { problems. Numerical Linear Algebra With Applications, 2007, 14, 603-610. }\end{aligned}\)
246 A new project
\(57,521-532\).1.2
\(247 \quad\) Structured mixed and componentwise condition numbers of soTikhonov regularization for weighted total least squares problems. Applied Mathematics Letters,1.513
2007, 20, 82-87.A note on the representations for the Drazin inverse of \(2 \tilde{A}-2\) block matrices. Linear Algebra and lts0.446Applications, 2007, 423, 332-338.A model-order reduction method based on Krylov subspaces for mimo bilinear dynamical systems.
253 On mixed and componentwise condition numbers for Mooreâ \(\mathrm{E}_{\text {"Penrose inverse and linear least squares }}^{\text {problems. Mathematics of Computation, 2006, 76, 947-963. }}\)

Structured pseudospectra and structured sensitivity of eigenvalues. Journal of Computational and
254 Applied Mathematics, 2006, 197, 502-519.

255 On Drazin inverse of singular Toeplitz matrix. Applied Mathematics and Computation, 2006, 172, 809-817.
1.4

Condition numbers for the outer inverse and constrained singular linear system. Applied Mathematics and Computation, 2006, 174, 588-612.

A two-step algorithm for solving singular linear systems with index one. Applied Mathematics and
Computation, 2006, 175, 472-485.

Krylov subspace methods for the generalized Sylvester equation. Applied Mathematics and Computation, 2006, 175, 557-573.

The analysis of restart DGMRES for solving singular linear systems. Applied Mathematics and Computation, 2006, 176, 293-301.

A note on the PageRank algorithm. Applied Mathematics and Computation, 2006, 179, 799-806.

A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport
261 theory. Applied Mathematics and Computation, 2006, 181, 1499-1504.

Interval iterative methods for computing Mooreâe"Penrose inverse. Applied Mathematics and Computation, 2006, 183, 522-532.

\section*{Corrected Uzawa methods for solving large nonsymmetric saddle point problems. Applied \\ Mathematics and Computation, 2006, 183, 1108-1120.}

Additive results for the generalized Drazin inverse in a Banach algebra. Linear Algebra and Its Applications, 2006, 418, 53-61.

Perturbation analysis of generalized saddle point systems. Linear Algebra and Its Applications, 2006, 419, 8-23.

Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices \(\hat{a} €^{\prime \prime}\)
266 Application of perturbation theory for simple invariant subspaces. Linear Algebra and Its Applications,
0.4

2006, 419, 765-771.
267 Condition Numbers for Structured Least Squares Problems. BIT Numerical Mathematics, 2006, 46,
203-225.

268 Fast corrected Uzawa methods for solving symmetric saddle point problems. Calcolo, 2006, 43, 65-82.
0.6

11

\footnotetext{
269 Nonlinear uzawa methods for solving nonsymmetric saddle point problems. Journal of Applied Mathematics and Computing, 2006, 21, 1-21.
}
1.2

Smoothed analysis of some condition numbers. Numerical Linear Algebra With Applications, 2006, 13,
71-84.

271 Stability properties of superoptimal preconditioner from numerical range. Numerical Linear Algebra With Applications, 2006, 13, 513-521.
275 Structured perturbations of group inverse and singular linear system with index one. Journal of Computational and Applied Mathematics, 2005, 173, 93-113.
\(1.1 \quad 16\)
276 Condition number for the Drazin inverse and the Drazin-inverse solution of singular linear system with their condition numbers. Journal of Computational and Applied Mathematics, 2005, 182, 270-289.
1.1
```

277 On perturbation bounds of Kronecker product linear systems and their level-2 condition numbers. Journal of Computational and Applied Mathematics, 2005, 183, 210-231.

```

\section*{278 Condition numbers and structured perturbation of the W-weighted Drazin inverse. Applied} Mathematics and Computation, 2005, 165, 185-194.
1.4
285 Outer Generalized Inverses in Rings. Communications in Algebra, 2005, 33, 3051-3060. ..... 0.3 ..... 42
Further note on constraint preconditioning for nonsymmetric indefinite matrices. Applied
Mathematics and Computation, 2004, 152, 43-46.

292 The representation and approximations of outer generalized inverses. Acta Mathematica Hungarica,
A note on the representation and approximation of the outer inverse AT,S(2) of a matrix A. Applied
Mathematics and Computation, 2004, 147, 837-841.
294 Weighted Tikhonov filter matrices for ill-posed problems. Applied Mathematics and Computation,
295 A note on the perturbation of the \(W\)-weighted Drazin inverse. Applied Mathematics and Computation, 2004, 149, 423-430.
296 2004, 153, 187-198.
\(297 \quad\) Displacem1.46Computation, 2004, 155, 655-664.
299 Circulant preconditioners for solving differential equations with multidelays. Computers and Mathematics With Applications, 2004, 47, 1429-1436.
1.4 ..... 15
300 Computing Moore-Penrose inverses of To2.050
1.410DFOM algorithm and error analysis for projection methods for solving singular linear system.301 Applied Mathematics and Computation, 2004, 157, 313-329.Displacement rank of the Drazin inverse. Journal of Computational and Applied Mathematics, 2004, 167,1.1

The representation and approximation for the generalized inverse AT,S(2). Applied Mathematics and
Computation, 2003, 135, 263-276.

On continuity of the generalized inverse AT,S(2). Applied Mathematics and Computation, 2003, 136,

\section*{308 289-295.}

309 The representation and approximation of the Drazin inverse of a linear operator in Hilbert space. Applied Mathematics and Computation, 2003, 138, 77-89.

A note on the perturbation bound of the Drazin inverse. Applied Mathematics and Computation, 2003, 140, 329-340.
1.4
1.4

The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert space. Applied Mathematics and Computation, 2003, 141, 455-470.
1.4

Generalized inverses and a block-rank equation. Applied Mathematics and Computation, 2003, 141, 471-476.

Integral representation of the W-weighted Drazin inverse. Applied Mathematics and Computation, 2003, 144, 3-10.

Condition numbers and perturbation of the weighted Mooreâ€"Penrose inverse and weighted linear least squares problem. Applied Mathematics and Computation, 2003, 145, 45-58.

Perturbation analysis of singular linear systems with arbitrary index. Applied Mathematics and Computation, 2003, 145, 297-305.

A note on the sensitivity of the solution of the weighted linear least squares problem. Applied Mathematics and Computation, 2003, 145, 481-485.

317 Condition number of Drazin inverse and their condition numbers of singular linear systems. Applied Mathematics and Computation, 2003, 146, 455-467.

Condition number related with generalized inverse AT,S(2) and constrained linear systems. Journal of
318 Computational and Applied Mathematics, 2003, 157, 57-72.
1.1

22

The representation and approximation for the weighted Mooreâ \(€\) "Penrose inverse in Hilbert space.
Applied Mathematics and Computation, 2003, 136, 475-486.

Subproper and regular splittings for restricted rectangular linear system. Applied Mathematics and Computation, 2003, 136, 535-547.

Perturbation bounds for the generalized inverses AT,S(2) with application to constrained linear system. Applied Mathematics and Computation, 2003, 142, 63-78.

Condition number of Bottâ \(€\) "Duffin inverse and their condition numbers. Applied Mathematics and
Computation, 2003, 142, 79-97.

On integral representation of the generalized inverse AT,S(2). Applied Mathematics and Computation,
2003, 142, 189-194.

A Stability Property of T. Chan's Preconditioner. SIAM Journal on Matrix Analysis and Applications, 2003, 25, 627-629.

Error Bounds for Perturbation of the Drazin Inverse of Closed Operators with Equal Spectral
Projections. Applicable Analysis, 2002, 81, 915-928.

ON INTEGRAL REPRESENTATIONS OF THE DRAZIN INVERSE IN BANACH ALGEBRAS. Proceedings of the Edinburgh Mathematical Society, 2002, 45, 327-331.

Additive results for the generalized Drazin inverse. Journal of the Australian Mathematical Society,
2002, 73, 115-126.

A note on computing the generalized inverseAâ€\%ıT,Sâ€\%o(2) of a matrixA. International Journal of Mathematics and Mathematical Sciences, 2002, 31, 497-507.

Relative errors versus residuals of approximate solutions of weighted least squares problems in Hilbert space. Computers and Mathematics With Applications, 2002, 44, 407-411.

Triple reverse-order law for weighted generalized inverses. Applied Mathematics and Computation, 2002, 125, 221-229.

331 Perturbation bound of the Drazin inverse. Applied Mathematics and Computation, 2002, 125, 231-244.

On the use of incomplete semiiterative methods for singular systems and applications in Markov chain modeling. Applied Mathematics and Computation, 2002, 125, 245-259.

333 A characterization for the \(W\)-weighted Drazin inverse and a Cramer rule for the \(W\)-weighted Drazin
333 inverse solution. Applied Mathematics and Computation, 2002, 125, 303-310.

Bounds for perturbed solutions of linear operator equations in Hilbert space. Applied Mathematics and Computation, 2002, 132, 293-298.

Perturbation bounds for constrained and weighted least squares problems. Linear Algebra and lts
Applications, 2002, 349, 221-232.

336 A weighted Drazin inverse and applications. Linear Algebra and Its Applications, 2002, 350, 25-39.
0.4

51
.
1.4

30
337 The Drazin inverse of a modified matrix. Applied Mathematics and Computation, 2002, 125, \(295-301\).
1.4
linear equations. Applied Mathematics and Computation, 2002, 133, 547-557.

The perturbation theory for the Drazin inverse and its applications II. Journal of the Australian
Mathematical Society, 2001, 70, 189-198.

On the perturbation and subproper splittings for the generalized inverse AT,S(2) of rectangular matrix A. Journal of Computational and Applied Mathematics, 2001, 137, 317-329.
1.1

Representations for Moore-Penrose inverses in Hilbert spaces. Applied Mathematics Letters, 2001, 14,
599-604.
1.5

39
A geometrical approach on generalized inverses by Neumann-type series. Linear Algebra and Its
Applications, 2001, 332-334, 533-540.

An improvement on the perturbation of the group inverse and oblique projection. Linear Algebra and Its Applications, 2001, 338, 53-66.

The weighted Mooreâ€"Penrose inverse of modified matrices. Applied Mathematics and Computation, 2001, 122, 1-13.

Perturbation of least squares problem in Hilbert spaces. Applied Mathematics and Computation, 2001, 121, 177-183.

Challenging Problems on the Perturbation of Drazin Inverse. Annals of Operations Research, 2001, 103, 371-378.

The representation and approximation for the weighted Mooreâ€"Penrose inverse. Applied Mathematics and Computation, 2001, 121, 17-28.
(T,S) splitting methods for computing the generalized inverse and rectangular systemsâ^-. International
Journal of Computer Mathematics, 2001, 77, 401-424.

Perturbation analysis of singular linear systems with index oneâ^-. International Journal of Computer Mathematics, 2000, 74, 483-491.

The Drazin inverse of updating of a square matrix with application to perturbation formula. Applied
351 Mathematics and Computation, 2000, 108, 77-83.

Recurrent neural networks for computing weighted Mooreâ€"Penrose inverse. Applied Mathematics and Computation, 2000, 116, 279-287.

Successive matrix squaring algorithm for parallel computing the weighted generalized inverse AMN+.
Applied Mathematics and Computation, 2000, 116, 289-296.

Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra and Its Applications, 2000, 312, 181-189.

The representation and approximation for Drazin inverse. Journal of Computational and Applied Mathematics, 2000, 126, 417-432.

Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index. Journal of Computational and Applied Mathematics, 2000, 114, 305-318.

The perturbation of the Drazin inverse and oblique projection. Applied Mathematics Letters, 2000, 13,
77-83.

Expression for the perturbation of the weighted Moore-Penrose inverse. Computers and Mathematics
With Applications, 2000, 39, 13-18.

Successive matrix squaring algorithm for computing the Drazin inverse. Applied Mathematics and
Computation, 2000, 108, 67-75.
1.4

Perturbation Identities for Regularized Tikhonov Inverses and Weighted Pseudoinverses. BIT
Numerical Mathematics, 2000, 40, 513-523.
361 On the perturbation of the group inverse and oblique projection. Applied Mathematics and1.466
Computation, 1999, 98, 29-42.1.413Perturbation bound of singular linear systems. Applied Mathematics and Computation, 1999, 105,211-220.
\(1.4 \quad 87\)
363 Index splitting for the Drazin inverse and the singular linear system. Applied Mathematics and
Computation, 1998, 95, 115-124.A characterization and representation of the generalized inverse \(A(2) T, S\) and its applications. Linear
364 Algebra and Its Applications, 1998, 280, 87-96.
365 Inverse Order Rule for Weighted Generalized Inverse. SIAM Journal on Matrix Analysis and 0.7 ..... 61
366 Expressions for the drazin inverse of a \(2 \tilde{A}-2\) Block Matrix. Linear and Multilinear Algebra, 1998, 45, 131-146.
367 The perturbation theory for the Drazin inverse and its applications. Linear Algebra and Its Applications, 1997, 258, 179-186.
A Characterization and Representation of the Drazin Inverse. SIAM Journal on Matrix Analysis andApplications, 1996, 17, 744-747.
0.7 ..... 79
369 Accelerated dynamical approaches for finding the unique positive solution of \$mathcal \{K\}mathcal\{S\}\$-tensor equations. Numerical Algorithms, 0, , 1.Additional results on index splittings for Drazin inverse solutions of singular linear systems.Electronic Journal of Linear Algebra, 0, 8, .
371 Integral representation of the Drazin inverse. Electronic Journal of Linear Algebra, 0, 9, .0.66
372 Representations for the Drazin inverse of bounded operators on Banach space. Electronic Journal ofLinear Algebra, 0, 18, .0.616
373 Perturbation of the generalized Drazin inverse. Electronic Journal of Linear Algebra, 0, 21, .0.63Some additive results for the generalized Drazin inverse in a Banach algebra. Electronic Journal ofLinear Algebra, 0, 22, .
A note on block representations of the group inverse of Laplacian matrices. Electronic Journal of0.618376 Bounds for eigenvalues of nonsingular H-tensor. Electronic Journal of Linear Algebra, 0, 29, 3-16.```


[^0]:    Source: https:|/exaly.com/author-pdf/570503/publications.pdf
    Version: 2024-02-01

