Yimin Wei

List of Publications by Year in descending order

[^0]

\#	Article		
1	<mmimatn xmins:mmi= ntep:/\|www.ws.org/ly90\%	viath	/viatniviL artmge sil.git overflow="scroll"><mml:mi mathvariant="script">M</mml:mi></mml:math>-tensors and nonsingular<mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script"> M</mml:mi></mml:math>-tensors. Linear Algebra

0.9
overflow="scroll" > <mml:mi mathvariant="script" $>\mathrm{M}</ \mathrm{mml}$:mi $></ \mathrm{mml}$:math >-tensors. Linear Algebra
Solving Multi-linear Systems with \$\$mathcal \{M\}\$\$ M -Tensors. Journal of Scientific Computing, 2016, 68, 689-715.
2.3

145
2
$3 \quad$ Some additive results on Drazin inverse. Linear Algebra and Its Applications, 2001, 322, 207-217.
$0.9 \quad 141$

A characterization and representation of the generalized inverse $A(2) T, S$ and its applications. Linear

6 Positive-Definite Tensors to Nonlinear Complementarity Problems. Journal of Optimization Theory and
Applications, 2016, 168, 475-487.
1.5

116

7 Mooreâ€"Penrose inverse of tensors via Einstein product. Linear and Multilinear Algebra, 2016, 64,
7 686-698.
1.0

113

8 The perturbation theory for the Drazin inverse and its applications. Linear Algebra and Its
Applications, 1997, 258, 179-186.
0.9

110

9 | Additive results for the generalized Drazin inverse. Journal of the Australian Mathematical Society, |
| :--- |
| $2002,73,115-126$. |

10 Representations for the Drazin Inverse of a 2×2 Block Matrix. SIAM Journal on Matrix Analysis and
Applications, 2005, 27, 757-771.
11 Index splitting for the Drazin inverse and the singular linear system. Applied Mathematics and
Computation, 1998, 95, 115-124.
$2.2 \quad 87$

A Characterization and Representation of the Drazin Inverse. SIAM Journal on Matrix Analysis and Applications, 1996, 17, 744-747.
1.4

79

Recurrent Neural Network for Computing the Drazin Inverse. IEEE Transactions on Neural Networks
$11.3 \quad 78$
and Learning Systems, 2015, 26, 2830-2843.
8

Expressions for the drazin inverse of a 2Ã-2 Block Matrix. Linear and Multilinear Algebra, 1998, 45, 131-146.
1.0

75

On mixed and componentwise condition numbers for Mooreâ€ "Penrose inverse and linear least squares
problems. Mathematics of Computation, $2006,76,947-963$.
2.1

73

Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index.
Journal of Computational and Applied Mathematics, 2000, 114, 305-318.
2.0

71

Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin
inverse. Linear Algebra and Its Applications, 2018, 542, 101-117.
Perturbation of the Drazin inverse for matr
and Its Applications, 2000, 312, 181-189.
$0.9 \quad 54$30 A characterization for the W-weighted Drazin inverse and a Cramer rule for the W-weighted Drazininverse solution. Applied Mathematics and Computation, 2002, 125, 303-310.
$2.2 \quad 52$

Fast Hankel tensorâ€ "vector product and its application to exponential data fitting. Numerical Linear Algebra With Applications, 2015, 22, 814-832.

1.6

47

The representation and approximations of outer generalized inverses. Acta Mathematica Hungarica, 2004, 104, 1-26.
0.5

46
A note on the representations for the Drazin inverse of $2 \tilde{A}-2$ block matrices. Linear Algebra and Its
Applications, 2007, 423, 332-338.

Neural networks based approach solving multi-linear systems with<mml:math
xmlns:mml="http:|/www.w3.org/1998/Math/MathML" altimg="si4.gif" overflow="scroll"><mml:mi
5.9
mathvariant="bold-script">M</mml:mi></mml:math>-tensors. Neurocomputing, 2019, 351, 33-42.
An Arnoldi-Extrapolation algorithm for computing PageRank. Journal of Computational and Applied
Mathematics, 2010, 234, 3196-3212.

T-Jordan Canonical Form and T-Drazin Inverse Based on the T-Product. Communications on Applied
Mathematics and Computation, 2021, 3, 201-220.
1.7

45
The perturbation theory for the Drazin inverse and its applications II. Journal of the Australian
Mathematical Society, 2001, 70, 189-198.
Perturbation bounds for constrained and weighted least squares problems. Linear Algebra and Its
Applications, 2002, 349, 221-232.

On the convergence of general stationary iterative methods for rangeâ€Hermitian singular linear
1.6

Tikhonov Regularization and Randomized GSVD. SIAM Journal on Matrix Analysis and Applications,
49 2016, 37, 649-675.
1.4

43

50 On group inverse of singular Toeplitz matrices. Linear Algebra and Its Applications, 2005, 399, 109-123.
0.9

42

51 Outer Generalized Inverses in Rings. Communications in Algebra, 2005, 33, 3051-3060.
 0.6
 42

A new projection method for solving large Sylvester equations. Applied Numerical Mathematics, 2007, 57, 521-532.
2.1

42

The Stable Perturbation of the Drazin Inverse of the Square Matrices. SIAM Journal on Matrix Analysis
and Applications, 2010, 31, 1507-1520.
1.4

41

The Drazin inverse of an even-order tensor and its application to singular tensor equations.
Computers and Mathematics With Applications, 2018, 75, 3402-3413.
55 (T,S) splitting methods for computing the generalized inverse and rectangular systemsâ̂-. International
Journal of Computer Mathematics, 2001, 77, 401-424.
1.8
Representations for Moore-Penrose inverses in Hilbert spaces. Applied Mathematics Letters, 2001, 14,
$599-604$.

58 On computing PageRank via lumping the Google matrix. Journal of Computational and Applied

62 Complex ZFs for computing time-varying complex outer inverses. Neurocomputing, 2018, 275, 983-1001.
5.9

36
Perturbation Identities for Regularized Tikhonov Inverses and Weighted Pseudoinverses. BIT
Numerical Mathematics, 2000, 40, 513-523.
64 A geometrical approach on generalized inverses by Neumann-type series. Linear Algebra and Its

Applications, 2001, 332-334, 533-540.
0.9

34
Error Bounds for Perturbation of the Drazin Inverse of Closed Operators with Equal Spectral
Projections. Applicable Analysis, 2002, 81, 915-928.

The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert space. Applied Mathematics and Computation, 2003, 141, 455-470.

Determinantal representation of the generalized inversei $A _\{T, S\} \wedge\{(2)\}$ over integral domains and its applications. Linear and Multilinear Algebra, 2009, 57, 547-559.
1.0

34

Sharp Norm-Estimations for Mooreâ€"Penrose Inverses of Stable Perturbations of Hilbert
\$C^*\$-Module Operators. SIAM Journal on Numerical Analysis, 2010, 47, 4735-4758.
2.3

34

Tensor neural network models for tensor singular value decompositions. Computational
Optimization and Applications, 2020, 75, 753-777.
1.6

34

On the perturbation and subproper splittings for the generalized inverse AT,S(2) of rectangular matrix A. Journal of Computational and Applied Mathematics, 2001, 137, 317-329.
73 An improvement on perturbation bounds for the Drazin inverse. Numerical Linear Algebra With Rpplications 2003 , 10e $563-575$ inverse of <mml:math altimg="sil.gif" overflow="scroll" xmlns:xOCs="http:/|www.elsevier.com/xml|xocs/dtd" xmlns:xs="http:|/www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"
74 xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"
xmlns:sb="http:/|www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http:/|www.els. Linear
Alge Integral and limit representations of the outer inverse in Banach space. Linear and Multilinear 75 Algebra, 2012, 60, 333-347.2.230Mathematics and Computation, 2000, 108, 77-83.Expression for the perturbation of the weighted Moore-Penrose inverse. Computers and Mathematics2.730
78 The Drazin inverse of a modified matrix. Applied Mathematics and Computation, 2002, 125, 295-301. 2.2 30
79 The representation and approximation of the Drazin inverse
Applied Mathematics and Computation, 2003, 138, 77-89. 2.2 30
80 Iterative solutions of coupled discrete Markovian jump Lyapunov equations. Computers andMathematics With Applications, 2008, 55, 843-850.
2.7 30
81 Perturbation analysis and condition numbers of scaled total least squares problems. Numerical
Algorithms, 2009, 51, 381-399.$1.9 \quad 30$
Complex Neural Network Models for Time-Varying Drazin Inverse. Neural Computation, 2016, 28,2790-2824.
2.2 30
83 Recurrent Neural Network for Computing Outer Inverse. Neural Computation, 2016, 28, 970-998. 2.2 30
84 Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einsteinproduct. Frontiers of Mathematics in China, 2017, 12, 1319-1337.0.730
2.729
The perturbation of the Drazin inverse and oblique projection. Applied Mathematics Letters, 2000, 13, $85 \quad$ The per
$77-83$.Successive matrix squaring algorithm for computing the Drazin inverse. Applied Mathematics andComputation, 2000, 108, 67-75.2.229
Illâ€conditioning of the truncated singular value decomposition, Tikhonov regularization and their87 applications to numerical partial differential equations. Numerical Linear Algebra With Applications,1.6292011, 18, 205-221.

Successive matrix squaring algorithm for parallel computing the weighted generalized inverse AMN+.
Applied Mathematics and Computation, 2000, 116, 289-296.

91	Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices â $€^{\text {" }}$ Application of perturbation theory for simple invariant subspaces. Linear Algebra and Its Applications, 2006, 419, 765-771.	0.9	28
92	Group inverse for block matrices and some related sign analysis. Linear and Multilinear Algebra, 2012, 60, 669-681.	1.0	28
93	Generalized inverses of tensors via a general product of tensors. Frontiers of Mathematics in China, 2018, 13, 893-911.	0.7	28
94	Modified gradient dynamic approach to the tensor complementarity problem. Optimization Methods and Software, 2020, 35, 394-415.	2.4	28
95	Smoothed analysis of some condition numbers. Numerical Linear Algebra With Applications, 2006, 13, 71-84.	1.6	27
96	Neural network approach for solving nonsingular multi-linear tensor systems. Journal of Computational and Applied Mathematics, 2020, 368, 112569.	2.0	27
97	Condition Numbers of the Generalized Sylvester Equation. IEEE Transactions on Automatic Control, 2007, 52, 2380-2385.	5.7	26
98	Arnoldi versus CMRES for computing pageRank. ACM Transactions on Information Systems, 2010, 28, 1-28.	4.9	26
99	A note on additive results for the Drazin inverse. Linear and Multilinear Algebra, 2011, 59, 1319-1329.	1.0	26
100	Backward error and perturbation bounds for high order Sylvester tensor equation. Linear and Multilinear Algebra, 2013, 61, 1436-1446.	1.0	26
101	An infinity norm bound for the inverse of Dashnicâ€"Zusmanovich type matrices with applications. Linear Algebra and Its Applications, 2019, 565, 99-122.	0.9	26
102	ON INTEGRAL REPRESENTATIONS OF THE DRAZIN INVERSE IN BANACH ALGEBRAS. Proceedings of the Edinburgh Mathematical Society, 2002, 45, 327-331.	0.3	25
103	Perturbation bound of the Drazin inverse. Applied Mathematics and Computation, 2002, 125, 231-244.	2.2	25

104 â,„-tensors and nonsingular â,»-tensors. Frontiers of Mathematics in China, 2016, 11, 557-575.

```
105 Stochastic $$R_0$$ R 0 tensors to stochastic tensor complementarity problems. Optimization Letters,
2019, 13, 261-277.
```

1.6 25

109	Matrix Sign Function Methods for Solving Projected Ceneralized Continuous-Time Sylvester Equations. IEEE Transactions on Automatic Control, 2010, 55, 2629-2634.	5.7	23
110	Lumping algorithms for computing Googleâ $€^{T M_{S}}$ PageRank and its derivative, with attention to unreferenced nodes. Information Retrieval, 2012, 15, 503-526.	2.0	23
111	Mixed, componentwise condition numbers and small sample statistical condition estimation of Sylvester equations. Numerical Linear Algebra With Applications, 2012, 19, 639-654.	1.6	23
112	Generalized exact boundary synchronization for a coupled system of wave equations. Discrete and Continuous Dynamical Systems, 2014, 34, 2893-2905.	0.9	23
113	Perturbation analysis of singular linear systems with index oneâ^-. International Journal of Computer Mathematics, 2000, 74, 483-491.	1.8	22
114	Challenging Problems on the Perturbation of Drazin Inverse. Annals of Operations Research, 2001, 103, 371-378.	4.1	22
115	Condition number of Drazin inverse and their condition numbers of singular linear systems. Applied Mathematics and Computation, 2003, 146, 455-467.	2.2	22
116	Condition number related with generalized inverse AT,S(2) and constrained linear systems. Journal of Computational and Applied Mathematics, 2003, 157, 57-72.	2.0	22
117	Representations for the Drazin inverse of the sum < mml:math xmins:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" its anplications, Linear Algebra and Its Applications. 2009. 430. 438-454.		

118 Convergence of General Nonstationary Iterative Methods for Solving Singular Linear Equations. SIAM Journal on Matrix Analysis and Applications, 2011, 32, 72-89.
119 Additional results on index splittings for Drazin inverse solutions of singular linear systems. Electronic Journal of Linear Algebra, 0,8 , .
$0.6 \quad 22$

A note on the perturbation of the W-weighted Drazin inverse. Applied Mathematics and Computation,
120 2004, 149, 423-430.
2.2

21

Displacement rank of the Drazin inverse. Journal of Computational and Applied Mathematics, 2004, 167,
2.0

21
$121 \quad$ Displacem
$147-161$.

The generalized condition numbers of bounded linear operators in Banach spaces. Journal of the
0.4

21
122 Australian Mathematical Society, 2004, 76, 281-290.

Condition Numbers for Structured Least Squares Problems. BIT Numerical Mathematics, 2006, 46,
203-225.

A Diagonal Lattice Reduction Algorithm for MIMO Detection. IEEE Signal Processing Letters, 2012, 19,
311-314.

127	On Frobenius normwise condition numbers for Mooreâ€"Penrose inverse and linear least-squares problems. Numerical Linear Algebra With Applications, 2007, 14, 603-610.	1.6	20	
128	Global uniqueness and solvability of tensor complementarity problems for \$mathcal $\{H\} _\{+\} \$$-tensors. Numerical Algorithms, 2020, 84, 567-590.	1.9	20	
129	Perturbation of least squares problem in Hilbert spaces. Applied Mathematics and Computation, 2001, 121, 177-183.	2.2	19	
130	The representation and approximation for the weighted Mooreâ€"Penrose inverse in Hilbert space. Applied Mathematics and Computation, 2003, 136, 475-486.	2.2	19	
131	Partial orders on <mml:math xmlns:mml="http:\|	www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" > <mml:mi mathvariant="script"> B </mml:mi> <mml:mo stretchy="false" > (</mml:mo> <mml:mi mathvariant="script"> H </mml:mi> <mml:mo) Tj ETQq1 10.7843		
132	Condition number for the Drazin inverse and the Drazin-inverse solution of singular linear system with their condition numbers. Journal of Computational and Applied Mathematics, 2005, 182, 270-289.	2.0	18	
133	A contribution to perturbation analysis for total least squares problems. Numerical Algorithms, 2017, 75, 381-395.	1.9	18	

134 Condition Numbers of the Multidimensional Total Least Squares Problem. SIAM Journal on Matrix Analysis and Applications, 2017, 38, 924-948.
135 Acute perturbation of the group inverse. Linear Algebra and Its Applications, 2017, 534, 135-157. 0.9 18
136 Complex-valued neural networks for the Takagi vector of complex symmetric matrices.
Neurocomputing, 2017, 223, 77-85.
The method of funda
$2019,135,510-536$.
$5.9 \quad 18$
18
138 M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity. Applied2.718
Mathematics Letters, 2020, 102, 106137.
1.4 18The Computation of Low Multilinear Rank Approximations of Tensors via Power Scheme and Random
139 Projection. SIAM Journal on Matrix Analysis and Applications, 2020, 41, 605-636.
Time-varying generalized tensor eigenanalysis via Zhang neural networks. Neurocomputing, 2020, 407, 5.9 18
140 465-479.A note on block representations of the group inverse of Laplacian matrices. Electronic Journal of0.618
141 Linear Algebra, 0, 23,Generalized inverses and a block-rank equation. Applied Mathematics and Computation, 2003, 141,471-476.2.2
143 Displacem1.617

The Representation and Computational Procedures for the Generalized Inverse of an OperatorAin
145 Hibert Spaces. Numerical Functional Analysis and Optimization, 2009, 30, 168-182.

146 Effective condition number and its applications. Computing (Vienna/New York), 2010, 89, 87-112.
4.8

1779-1792.

Structured condition numbers of structured Tikhonov regularization problem and their estimations.
150 Journal of Computational and Applied Mathematics, 2016, 308, 276-300.
2.0

17

Stochastic structured tensors to stochastic complementarity problems. Computational Optimization and Applications, 2020, 75, 649-668.

Triple reverse-order law for weighted generalized inverses. Applied Mathematics and Computation,

The algorithm for computing the Drazin inverses of two-variable polynomial matrices. Applied Mathematics and Computation, 2004, 147, 805-836.
2.2

16

155	Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied Mathematics and Computation, 2004, 147, 855-862.	2.2	16
156	Structured perturbations of group inverse and singular linear system with index one. Journal of Computational and Applied Mathematics, 2005, 173, 93-113.	2.0	16
157	A note on the PageRank algorithm. Applied Mathematics and Computation, 2006, 179, 799-806.	2.2	16
158	A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory. Applied Mathematics and Computation, 2006, 181, 1499-1504.	2.2	16
159	A model-order reduction method based on Krylov subspaces for mimo bilinear dynamical systems. Journal of Applied Mathematics and Computing, 2007, 25, 293-304.	2.5	16
160	Perturbation analysis for a class of fuzzy linear systems. Journal of Computational and Applied Mathematics, 2009, 224, 54-65.	2.0	16
161	Neural network approach to computing outer inverses based on the full rank representation. Linear Algebra and Its Applications, 2016, 501, 344-362.	0.9	16
162	Existence and uniqueness of positive solution for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="dle3584" altimg="si283.svg">mml:msupmml:mrow<mml:mi mathvariant="script">H</mml:mi></mml:mrow>mml:mrowmml:mo+<\|mml:mo></mml:mrow>< equations. Applied Mathematics Letters, 2019, 98, 191-198.		

Mathematics and Computation, 2004, 147, 805-836.2.2152 and Applications, 2020, 75, 649-668.

2002, 125, 221-229.

15
153 2002, 125, 221-229.

A note on stable perturbations of Mooreâ€"Penrose inverses. Numerical Linear Algebra With

Applications, 2013, 20, 18-26.
$149 \quad \begin{aligned} & \text { A note on stable perturbations } \\ & \text { Applications, 2013, 20, 18-26. }\end{aligned}$ 1.6 17

Model-order reduction of large-scale <i>k</i>th-order linear dynamical systems via a<i>k<|i>th-order

Arnoldi method. International Journal of Computer Mathematics, 2010, 87, 435-453.
147 Arnoldi method. International Journal of Computer Mathematics, 2010, 87, 435-453. 1.8 17

Some block matrices with signed Drazin inverses. Linear Algebra and Its Applications, 2012, 437,0.917
Randomized algorithms for total least squares problems. Numerical Linear Algebra With Applications,
2019, 26, e2219.
Randomized algorithms for total least squares problems. Numerical Linear Algebra With Applications,
2019,26 , e2219. $1.6 \quad 17$
Iterative methods for the Drazin inverse of a matrix with a complex spectrum. Applied MathematicsStructured perturbations of group inverse and singular linear system with index one. Journal ofComputational and Applied Mathematics, 2005, 173, 93-113.A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transportA model-order reduction method based on Krylov subspaces for mimo bilinear dynamical systems.2.516Perturbation analysis for a class of fuzzy linear systems. Journal of Computational and Applied

163	Representations for the Drazin inverse of bounded operators on Banach space. Electronic Journal of Linear Algebra, 0, 18,	0.6	16
164	Operators with equal projections related to their generalized inverses. Applied Mathematics and Computation, 2004, 155, 655-664.	2.2	15
165	Circulant preconditioners for solving differential equations with multidelays. Computers and Mathematics With Applications, 2004, 47, 1429-1436.	2.7	15
166	Krylov subspace methods for the generalized Sylvester equation. Applied Mathematics and Computation, 2006, 175, 557-573.	2.2	15
167	On Normwise Structured Backward Errors for Saddle Point Systems. SIAM Journal on Matrix Analysis and Applications, 2007, 29, 838-849.	1.4	15
168	Gradient methods for computing the Drazin-inverse solution. Journal of Computational and Applied Mathematics, 2013, 253, 255-263.	2.0	15
169	Tensor logarithmic norm and its applications. Numerical Linear Algebra With Applications, 2016, 23, 989-1006.	1.6	15

170 Geometric measures of entanglement in multipartite pure states via complex-valued neural networks. Neurocomputing, 2018, 313, 25-38.
171 Randomized Kaczmarz methods for tensor complementarity problems. Computational Optimization
and Applications, 2022, 82, 595-615.1.615
The weighted Mooreâ€"Penrose inverse of modified matrices. Applied Mathematics and Computation,
172 2001, 122, 1-13. 2.2 14
0.7 14
173 A note on computing the generalized inverseAâ€\%oT,Sâ $€ \%$ (2) of a matrixA. International Journal of Mathematics and Mathematical Sciences, 2002, 31, 497-507.
2.2 14
174 On Drazin inverse of singular Toeplitz matrix. Applied Mathematics and Computation, 2006, 172, 809-817.1.814175 Model-order reduction of large-scale second-order MIMO dynamical systems via a blockQuotient convergence and multi-splitting methods for solving singular linear equations. Calcolo,1.114
2007, 44, 21-31.0.914
430, 1531-1543.A genome-scale metabolic network alignment method within a hypergraph-based framework using arotational tensor-vector product. Scientific Reports, 2018, 8, 16376.3.314Perturbation bound of singular linear systems. Applied Mathematics and Computation, 1999, 105,

181	Convergence and quotient convergence of iterative methods for solving singular linear equations with index one. Linear Algebra and Its Applications, 2009, 430, 1665-1674.	0.9	13
182	Spectral properties of sums of certain Kronecker products. Linear Algebra and Its Applications, 2009, 431, 1691-1701.	0.9	13
183	Condition numbers and perturbation analysis for the Tikhonov regularization of discrete ill-posed problems. Numerical Linear Algebra With Applications, 2011, 18, 87-103.	1.6	13
184	On condition numbers for Mooreâ€"Penrose inverse and linear least squares problem involving Kronecker products. Numerical Linear Algebra With Applications, 2013, 20, 44-59.	1.6	13
185	Accelerating the Arnoldi-Type Algorithm for the PageRank Problem and the ProteinRank Problem. Journal of Scientific Computing, 2013, 57, 74-104.	2.3	13
186	Recurrent neural network for computation of generalized eigenvalue problem with real diagonalizable matrix pair and its applications. Neurocomputing, 2016, 216, 230-241.	5.9	13
187	The stability of formulae of the Gohbergấ "Semenculâe"Trench type for Mooreâe"Penrose and group inverses of Toeplitz matrices. Linear Algebra and Its Applications, 2016, 498, 117-135.	0.9	13
188	A fast algorithm for solving circulant tensor systems. Linear and Multilinear Algebra, 2017, 65, 1894-1904.	1.0	13
189	PCR algorithm for parallel computing minimum-norm (T) least-squares (S) solution of inconsistent linear equations. Applied Mathematics and Computation, 2002, 133, 547-557.	2.2	12
190	Interval iterative methods for computing Mooreâ€"Penrose inverse. Applied Mathematics and Computation, 2006, 183, 522-532.	2.2	12
191	Structured mixed and componentwise condition numbers of some structured matrices. Journal of Computational and Applied Mathematics, 2007, 202, 217-229.	2.0	12
192	On level-2 condition number for the weighted Mooreâ€"Penrose inverse. Computers and Mathematics With Applications, 2008, 55, 788-800.	2.7	12
193	Effective condition numbers and small sample statistical condition estimation for the generalized Sylvester equation. Science China Mathematics, 2013, 56, 967 -982.	1.7	12

199 Perturbation bounds for the generalized inverses AT,S(2) with application to constrained linear2.2system. Applied Mathematics and Computation, 2003, 142, 63-78.
A note on the representation and approximation of the outer inverse $\mathrm{AT}, \mathrm{S}(2)$ of a matrix A . Applied2.2Mathematics and Computation, 2004, 147, 837-841.
201 Condition numbers and structured perturbation of the W-weighted Drazin inverse. Applied 2.2
Mathematics and Computation, 2005, 165, 185-194. 11
Perturbation analysis of generalized saddle point systems. Linear Algebra and Its Applications, 2006,
202 419, 8-23.
203 Fast corrected Uzawa methods for solving symmetric saddle point problems. Calcolo, 2006, 43, 65-82.1.1
204 A modified Newton method for solving non-symmetric algebraic Riccati equations arising in transporttheory. IMA Journal of Numerical Analysis, 2007, 28, 215-224.
205 A note on constraint preconditioners for nonsymmetric saddle point problems. Numerical Linear Algebra With Applications, 2007, 14, 659-664.
206 A survey and some extensions of T. Chanâ $€^{T M}$ s preconditioner. Linear Algebra and Its Applications, 2008, 428, 403-412.
207 On the convergence of splittings for semidefinite linear systems. Linear Algebra and Its Applications,
2008, 429, 2555-2566.0.9
208 Characterizations and representations of the Drazin inverse involving idempotents. Linear Algebraand Its Applications, 2009, 431, 1526-1538.11
111111
209 Partial orthogonal rank-one decomposition of complex symmetric tensors based on the Takagi
factorization. Journal of Computational and Applied Mathematics, 2018, 332, 56-71.
2.0 11
210 An Efficient Randomized Algorithm for Computing the Approximate Tucker Decomposition. Journal of2.311
Scientific Computing, 2021, 88, 1.2.011
Randomized algorithms for the low multilinear rank approximations of tensors. Journal ofSome additive results for the generalized Drazin inverse in a Banach algebra. Electronic Journal of
Linear Algebra, 0, 22, . 212An innovative, low-cost and environment-friendly approach by using a deep eutectic solvent as the213 water substitute to minimize waste in the textile industry and for better clothing performance. Green9.011Chemistry, 2022, 24, 5904-5917.
Condition number of Bottâ€"Duffin inverse and their condition numbers. Applied Mathematics and 2.2 10
Computation, 2003, 142, 79-97.
2.2 10
DFOM algorithm and error analysis for projection methods for solving singular linear system.
Applied Mathematics and Computation, 2004, 157, 313-329. 10
215Nonlinear uzawa methods for solving nonsymmetric saddle point problems. Journal of Applied2.510
Continuity properties of the $\{1\}$-inverse and perturbation bounds for the Drazin inverse. Linear
Algebra and Its Applications, 2008, 429, 1026-1037.

Krylov Subspace Algorithms for Computing GeneRank for the Analysis of Microarray Data Mining. Journal of Computational Biology, 2010, 17, 631-646.

219 Explicit characterization of the Drazin index. Linear Algebra and Its Applications, 2012, 436, 2273-2298.
0.9

10
1.0

61, 1568-1576.

Boundary methods for Dirichlet problems of Laplacex³s equation in elliptic domains with elliptic holes.
Engineering Analysis With Boundary Elements, 2015, 61, 91-103.
3.7

Perturbation bounds of tensor eigenvalue and singular value problems with even order. Linear and Multilinear Algebra, 2016, 64, 622-652.
1.0

10

223 Mixed and componentwise condition numbers for matrix decompositions. Theoretical Computer
Science, 2017, 681, 199-216.
0.9

10

Iterative algorithms for computing US- and U-eigenpairs of complex tensors. Journal of Computational and Applied Mathematics, 2017, 317, 547-564.

T-product tensorsâ€"part II: tail bounds for sums of random T-product tensors. Computational and
Applied Mathematics, 2022, 41, 1.

On the use of incomplete semiiterative methods for singular systems and applications in Markov chain modeling. Applied Mathematics and Computation, 2002, 125, 245-259.

Further results on the Mooreâ€" 227 Penrose invertibility of projectors and its applications. Linear and
Multilinear Algebra, 2012, 60, 109-129.
Multilinear Algebra, 2012, 60, 109-129.

228 A preconditioned conjugate gradient algorithm for GeneRank with application to microarray data mining. Data Mining and Knowledge Discovery, 2013, 26, 27-56.
3.7
1.0

9

An inexact shiftâ€andâ€invert Arnoldi algorithm for Toeplitz matrix exponential. Numerical Linear
229 Algebra With Applications, 2015, 22, 777-792.

Inheritance properties and sum-of-squares decomposition of Hankel tensors: theory and algorithms.
230 BIT Numerical Mathematics, 2017, 57, 169-190.
2.0

9

231 T-square tensorsâ€"Part I: inequalities. Computational and Applied Mathematics, 2022, 41, 1.
2.2

9

Fast randomized tensor singular value thresholding for lowâ€ $€_{\text {rank }}$ tensor optimization. Numerical Linear Algebra With Applications, 2022, 29, .

```
A note on the perturbation bound of the Drazin inverse. Applied Mathematics and Computation, 2003,
140, 329-340.
```

On perturbation bounds of Kronecker product linear systems and their level-2 condition numbers.
Journal of Computational and Applied Mathematics, 2005, 183, 210-231.

236 A note on solving EP inconsistent linear systems. Applied Mathematics and Computation, 2005, 169, 8-15.

Condition numbers for the outer inverse and constrained singular linear system. Applied Mathematics and Computation, 2006, 174, 588-612.

238 A note on the perturbation of an outer inverse. Calcolo, 2008, 45, 263-273.
1.1

8

239 Estimates of the spectral condition number. Linear and Multilinear Algebra, 2011, 59, 249-260.

Cauchy problems of Laplace's equation by the methods of fundamental solutions and particular solutions. Engineering Analysis With Boundary Elements, 2013, 37, 765-780.

241 Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite
tensors. Computational and Applied Mathematics, 2019, 38, 1.

Note on error bounds for linear complementarity problems of Nekrasov matrices. Numerical Algorithms, 2020, 83, 355-372.

Condition numbers of the multidimensional total least squares problems having more than one solution. Numerical Algorithms, 2020, 84, 887-908.

Preconditioned tensor splitting AOR iterative methods for â,„«â€tensor equations. Numerical Linear Algebra With Applications, 2020, 27, e2329.

245 Perturbations of the Tcur Decomposition for Tensor Valued Data in the Tucker Format. Journal of Optimization Theory and Applications, 2022, 194, 852-877.

On continuity of the generalized inverse AT,S(2). Applied Mathematics and Computation, 2003, 136, 289-295.

247 Stagnation analysis of DGMRES. Applied Mathematics and Computation, 2004, 151, 27-39.
$2.2 \quad 7$

Circulant preconditioners for solving singular perturbation delay differential equations. Numerical Linear Algebra With Applications, 2005, 12, 327-336.

A sharp version of Bauerâ $€^{\text {"Fikeâ }} €^{T M}$ s theorem. Journal of Computational and Applied Mathematics, 2012, 236,
3218-3227.

New rigorous perturbation bounds for the Cholesky-like factorization of skew-symmetric matrix.
Linear Algebra and Its Applications, 2016, 491, 83-100.

On matrices whose Moore-Penrose inverses are ray unique. Linear and Multilinear Algebra, 2016, 64,
1236-1243.
1.0

Pseudo-spectra theory of tensors and tensor polynomial eigenvalue problems. Linear Algebra and Its
Applications, 2017, 533, 536-572.

253 Notes on the Optimization Problems Corresponding to Polynomial Complementarity Problems. Journal of Optimization Theory and Applications, 2020, 184, 687-695.

Fourth-order tensor Riccati equations with the Einstein product. Linear and Multilinear Algebra,

255 | Acceptable Solutions and Backward Errors for Tensor Complementarity Problems. Journal of |
| :--- |
| Optimization Theory and Applications, 2021, 188, 260-276. |

256 | A Stability Property of T. Chan's Preconditioner. SIAM Journal on Matrix Analysis and Applications, |
| :--- |
| 2003, 25, 627-629. |

$\begin{array}{ll}1.5 & 7\end{array}$ 2003, 25, 627-629.

Further note on constraint preconditioning for nonsymmetric indefinite matrices. Applied Mathematics and Computation, 2004, 152, 43-46.

An expression of the Drazin inverse of a perturbed matrix. Applied Mathematics and Computation, 2004, 153, 187-198.
2.2

Displacement structure of weighted pseudoinverses. Applied Mathematics and Computation, 2004, 153, 317-335.

Preconditioned conjugate gradient method and generalized successive over relaxation method for
260 the weighted least squares problems. International Journal of Computer Mathematics, 2004, 81, 203-214.

261 A note on the componentwise perturbation bounds of matrix inverse and linear systems. Applied
Mathematics and Computation, 2005, 169, 1221-1236.
261 Mathematics and Computation, 2005, 169, 1221-1236.

Corrected Uzawa methods for solving large nonsymmetric saddle point problems. Applied Mathematics and Computation, 2006, 183, 1108-1120.

A note on the scaled total least squares problem. Linear Algebra and Its Applications, 2008, 428, 469-478.

Effective condition number of Trefftz methods for biharmonic equations with crack singularities. Numerical Linear Algebra With Applications, 2009, 16, 145-171.

Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems. Numerical Algorithms, 2009, 50, 17-32.

Effective condition number for weighted linear least squares problems and applications to the Trefftz method. Engineering Analysis With Boundary Elements, 2012, 36, 53-62.

Properties of the combinations of commutative idempotents. Linear Algebra and Its Applications, 2012, 436, 202-221.

E-cospectral hypergraphs and some hypergraphs determined by their spectra. Linear Algebra and Its Applications, 2014, 459, 397-403.

Fast computation of stationary joint probability distribution of sparse Markov chains. Applied Numerical Mathematics, 2018, 125, 68-85.
2.1 6

Randomized core reduction for discrete ill-posed problem. Journal of Computational and Applied
Mathematics, 2020, 375, 112797.

Condition numbers for the <i>K</i>-weighted pseudoinverse and their statistical estimation. Linear and Multilinear Algebra, 2021, 69, 752-770.
1.0

6

273 Integral representation of the Drazin inverse. Electronic Journal of Linear Algebra, 0, 9, .
$0.6 \quad 6$

274 Bounds for eigenvalues of nonsingular H-tensor. Electronic Journal of Linear Algebra, 0, 29, 3-16.
0.6 6
275 Subproper and regular splittings for restricted rectangular linear system. Applied Mathematics and Computation, 2003, 136, 535-547.

2.25

276 Weighted Tikhonov filter matrices for ill-posed problems. Applied Mathematics and Computation, 2004, 149, 411-422.
2.2

277 A generalization of T. Chanâ $\mathbb{T}^{T M}$ s preconditioner. Linear Algebra and Its Applications, 2005, 407, 11-18.
0.9

The analysis of restart DGMRES for solving singular linear systems. Applied Mathematics and
278 Computation, 2006, 176, 293-301.
2.25

279 Stability properties of superoptimal preconditioner from numerical range. Numerical Linear Algebra
With Applications, 2006, 13, 513-521.

280 Normwise, mixed and componentwise condition numbers of nonsymmetric algebraic Riccati equations.
Journal of Applied Mathematics and Computing, 2008, 27, 137-147.

281 On Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential.
SIAM Journal on Numerical Analysis, 2010, 48, 191-197.
2.3

5

282 On invertibility of combinations of k-potent operators. Linear Algebra and Its Applications, 2012, 437, 376-387.
0.9

5
283 Acute perturbation of Drazin inverse and oblique projectors. Frontiers of Mathematics in China, 2018,
283 13, 1427-1445.
$0.7 \quad 5$

Z-eigenvalues based structured tensors: \$\$mathcal \{M\}_z\$\$-tensors and strong \$\$mathcal
2.25
\{M\}_z\$\$-tensors. Computational and Applied Mathematics, 2019, 38, 1.

Pseudospectra localization sets of tensors with applications. Journal of Computational and Applied Mathematics, 2020, 369, 112580.
$2.0 \quad 5$

Parallel isotope differential modeling for instationary 13C fluxomics at the genome scale.
6.2

5
Biotechnology for Biofuels, 2020, 13, 103.

Multiplicative Algorithms for Symmetric Nonnegative Tensor Factorizations and Its Applications.
Journal of Scientific Computing, 2020, 83, 1.
2.3

5
\$M\$-eigenvalues of the Riemann curvature tensor. Communications in Mathematical Sciences, 2018, 16, 2301-2315.tensor equations. Neurocomputing, 2022, 472, 68-84.Stochastic Tensor Complementarity Problem with Discrete Distribution. Journal of Optimizationxmlns:xocs="http:/|www.elsevier.com/xml/xocs/dtd" xmlns:xs="http:/|www.w3.org/2001/XMLSchema"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"292 xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"xmlns:tb="http:/|www.elsevier.com/xml/common/table/dtd"
293 Alwo-step algorithm for solving singular linear systems with index one. Applied Mathematics and 2.2
4
A short note on singular values of optimal and superoptimal preconditioned matrices. InternationalJournal of Computer Mathematics, 2007, 84, 1261-1263.$1.8 \quad 4$
Comments on "Jordan Canonical Form of the Google Matrix". SIAM Journal on Matrix Analysis and 295 Applications, 2008, 30, 364-374.
297 Convergence of Rumpâ $€^{\mathrm{TM}}$ s method for computing the Moore-Penrose inverse. CzechoslovakMathematical Journal, 2016, 66, 859-879.
Characterizations of the spectral radius of nonnegative weakly irreducible tensors via a digraph.
299 Numerical solution to a linear equation with tensor product structure. Numerical Linear Algebra
With Applications, 2017, 24, e2106.
1.6 4
Adaptive algorithms for computing the principal Takagi vector of a complex symmetric matrix. 5.9 4
Neurocomputing, 2018, 317, 79-87.
1.9 4Accelerated dynamical approaches for finding the unique positive solution of \$mathcal $\{\mathrm{K}\}$ mathcal
301 \{S\}\$-tensor equations. Numerical Algorithms, 0, , 1.1.44
Multidimensional Total Least Squares Problem with Linear Equality Constraints. SIAM Journal on 302 Matrix Analysis and Applications, 2022, 43, 124-150.1.4
303 General tail bounds for random tensors summation: Majorization approach. Journal of Computational and Applied Mathematics, 2022, 416, 114533.2.04
Structured pseudospectra and structured sensitivity of eigenvalues. Journal of Computational and Applied Mathematics, 2006, 197, 502-519.

Relationship between the characteristic polynomial and the spectrum of a diagonalizable matrix and
those of its low-rank update. Linear and Multilinear Algebra, 2012, 60, 967-978.

308 On disjoint range operators in a Hilbert space. Linear Algebra and Its Applications, 2012, 437, 2366-2385.
0.9

Characterizations and representations of the (P, Q)-outer generalized inverse. Applied Mathematics and Computation, 2015, 269, 432-442.

Z-singular value and Z-singular value inclusion sets for tensors. Japan Journal of Industrial and
$310 \quad$ Z-singular value and Z-singular value inclusion

311 Neural network for computing GSVD and RSVD. Neurocomputing, 2021, 444, 59-66.
$5.9 \quad 3$

TLS-EM algorithm of Mixture Density Models for exponential families. Journal of Computational and
Applied Mathematics, 2022, 403, 113829.
2.0

3
313 Perturbation of the generalized Drazin inverse. Electronic Journal of Linear Algebra, 0, 21 , 0.6 3
314 Condition numbers of multidimensional mixed least squares-total least squares problems. AppliedNumerical Mathematics, 2022, 178, 52-68.

315 Componentwise perturbation analysis for the generalized Schur decomposition. Calcolo, 2022, 59, .

Relative errors versus residuals of approximate solutions of weighted least squares problems in Hilbert space. Computers and Mathematics With Applications, 2002, 44, 407-411.

317 Preconditioning technique for symmetric M-matrices. Calcolo, 2005, 42, 105-113.

A convergence analysis of the nonlinear Uzawa algorithm for saddle point problems. Applied Mathematics Letters, 2007, 20, 1094-1098.

On the convergence of subproper (multi)-splitting methods for solving rectangular linear systems.
Calcolo, 2008, 45, 17-33.

Model-order reduction of $\langle i\rangle k</ i\rangle$ th order MIMO dynamical systems using block<i>k</i>th order Krylov subspaces. International Journal of Computer Mathematics, 2011, 88, 150-162.

Towards backward perturbation bounds for approximate dual Krylov subspaces. BIT Numerical Mathematics, 2013, 53, 225-239.

Mixed, Componentwise Condition Numbers and Small Sample Statistical Condition Estimation for
322 Generalized Spectral Projections and Matrix Sign Functions. Taiwanese Journal of Mathematics, 2016, 20, .

323 Q-less QR decomposition in inner product spaces. Linear Algebra and Its Applications, 2016, 491, $292-316$.
0.9

$$
\begin{aligned}
& 325 \text { A Note on Perturbation Estimations for Spectral Projectors. Numerical Functional Analysis and } \\
& \text { Optimization, 2020, 41, 1741-1747. }
\end{aligned}
$$

333 Application. Journal of the Operations Research Society of China, 2017, 5, 65-82.

334 Tensor and hypergraph. Frontiers of Mathematics in China, 2017, 12, 1277-1277.
0.7

1
$335 \begin{aligned} & \text { An Application of Computer Algebra and Dynamical Systems. Lecture Notes in Computer Science, 2019, , } \\ & \text { 225-236. }\end{aligned}$,
$1.3 \quad 1$

A Unified Self-Stabilizing Neural Network Algorithm for Principal Takagi Component Extraction.
Neural Processing Letters, 2020, 51, 591-610.
3.2

1

Small-sample statistical condition estimation of rational Riccati equations. Applied Mathematics
2.7

1
Letters, 2020, 103, 106172.
$0.4 \quad 1$
339 The Diagonal Reduction Algorithm Using Fast Givens. , 2014, , 453-465. 1

Parallel Algorithms for Computing theÂGeneralized Inverses. Developments in Mathematics, 2018, ,

Randomized algorithms for the computation of multilinear rank-\$\$(mu _1,mu _2,mu _3)\$\$ approximations. Journal of Clobal Optimization, 0, ,

Perturbation analysis for best approximation and the polar factor by subunitary matrices. Frontiers
of Mathematics in China, 2008, 3, 523-534.

On solution uniqueness of elliptic boundary value problems. Journal of Computational and Applied Mathematics, 2009, 233, 293-307.

Condition number of singular value: zero-structured and patterned case. International Journal of
Computer Mathematics, 2010, 87, 391-403.

Perturbation Bound for the Eigenvalues of a Singular Diagonalizable Matrix. East Asian Journal on Applied Mathematics, 2014, 4, 88-94.

Stability analysis for singularly perturbed differential equations by the upwind difference scheme.
Numerical Methods for Partial Differential Equations, 2014, 30, 1595-1613.

Completions of Operator Matrices and Generalized Inverses. Developments in Mathematics, 2017, , 51-88.

Definitions and Motivations. Developments in Mathematics, 2017, , 1-10.
0.4

0

350 Drazin Inverse of a \$\$2 imes 2\$\$ Block Matrix. Developments in Mathematics, 2017, , 109-158.

351 Additive Results for the Drazin Inverse. Developments in Mathematics, 2017, , 159-192.

352 Operator Drazin Inverse. Developments in Mathematics, 2018, , 339-373.
0.4

Perturbation Analysis of the Drazin Inverse and the Group Inverse. Developments in Mathematics, 2018, , 291-306.

Perturbation Analysis of the Moore-Penrose Inverse and the Weighted Moore-Penrose Inverse. Developments in Mathematics, 2018, , 263-289.

355 Generalized Inverses of Polynomial Matrices. Developments in Mathematics, 2018, , 307-316.
0.4

0

Special Issue Research on Generalized Inverses in China. Numerical Functional Analysis and Optimization, 2020, 41, 1669-1671.
1.4

0

357 The stationary iterations revisited. Numerical Algebra, Control and Optimization, 2013, 3, 261-270.
1.6

0

358 On the Level-2 Condition Number for Mooreâ€"Penrose Inverse in Hilbert Space. , 2013, , 159-169.
0

Representations and sign pattern of the group inverse for some block matrices. Electronic Journal of
Linear Algebra, 0, 30, 744-759.
0.6

Multilinear Systems with <mml:math xmlns:mml="http:/|www.w3.org/1998/Math/MathML"
mathvariant="bold-script" >â,,3</mml:mi></mml:math>-Tensors., 2016, , 97-124.

362 Generalized Tensor Eigenvalue Problems. , 2016, , 11-36.
0
363 NORM ESTIMATIONS FOR PERTURBATIONS OF

0

364 Introduction and Preliminaries. , 2016, , 3-10.

365 Inheritance Properties. , 2016, 59-77. 0
367 Reverse Order and Forward Order Laws for \$\$A_\{T,S\}^\{(2)\}\$\$. Developments in Mathematics, 2018, ,
153-174.
369 Computational Aspects. Developments in Mathematics, 2018, , 175-224. 0.4 0
370 Drazin Inverse. Developments in Mathematics, 2018, , 65-90. 0.4 0
371 Generalization of the Cramerâ $€^{T M} s$ Rule andÂthe Minors of the Generalized Inverses. Developments in
Mathematics, 2018, , 91-151. 0.4 0
372 Moore-Penrose Inverse of Linear Operators. Developments in Mathematics, 2018, , 317-338. 0.4 0
373 Inequalities on Generalized Tensor Functions with Diagonalizable and Symmetric Positive Definite
Tensors. Statistics, Optimization and Information Computing, 2018, 6, .
0.70
374 Randomized Algorithms. , 2020, , 215-246. 0
375 Tensor Complementarity Problems., 2020, , 97-115. 0
376 The Pseudo-Spectrum Theory. , 2020, , 19-49.0
377 US- and U-Eigenpairs of Complex Tensors. , 2020, , 187-214.0

[^0]: Source: https:|/exaly.com/author-pdf/570503/publications.pdf
 Version: 2024-02-01

