Virgil Andrei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704856/publications.pdf

Version: 2024-02-01

32	1,410	³⁹⁴⁴²¹	477307
papers	citations	h-index	g-index
33	33	33	2156
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reforming of Soluble Biomass and Plastic Derived Waste Using a Biasâ€Free Cu ₃₀ Pd ₇₀ Perovskite Pt Photoelectrochemical Device. Advanced Functional Materials, 2022, 32, 2109313.	14.9	51
2	Reforming of Soluble Biomass and Plastic Derived Waste Using a Biasâ€Free Cu ₃₀ Pd ₇₀ Perovskite Pt Photoelectrochemical Device (Adv. Funct. Mater.) Tj ETQq0	0 01.4:g /BT/	Overlock 10 T
3	Automated synthesis and characterization techniques for solar fuel production. Nature Reviews Materials, 2022, 7, 251-253.	48.7	11
4	Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorganic Chemistry, 2022, 61, 6223-6233.	4.0	4
5	Long-term solar water and CO2 splitting with photoelectrochemical BiOl–BiVO4 tandems. Nature Materials, 2022, 21, 864-868.	27.5	41
6	Bifunctional Perovskiteâ€BiVO ₄ Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. Advanced Functional Materials, 2021, 31, 2008182.	14.9	36
7	Waterâ€Assisted Growth: Bifunctional Perovskiteâ€BiVO ₄ Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170104.	14.9	2
8	A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€toâ€Formate Efficiency Approaching 1 %. Angewandte Chemie - International Edition, 2021, 60, 26303-26307.	13.8	34
9	A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€toâ€Formate Efficiency Approaching 1 %. Angewandte Chemie, 2021, 133, 26507-26511.	2.0	4
10	Rücktitelbild: A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€toâ€Formate Efficiency Approaching 1 % (Angew. Chem. 50/2021). Angewandte Chemie, 2021, 133, 26616-26616.	2.0	1
11	Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS Energy Letters, 2020, 5, 232-237.	17.4	68
12	Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nature Materials, 2020, 19, 189-194.	27.5	175
13	The effect of post-deposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films. RSC Advances, 2020, 10, 29394-29401.	3.6	13
14	Selective CO production from aqueous CO ₂ using a Cu ₉₆ In ₄ catalyst and its integration into a bias-free solar perovskite–BiVO ₄ tandem device. Energy and Environmental Science, 2020, 13, 3536-3543.	30.8	32
15	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	39.5	156
16	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	3.2	2
17	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
18	Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications. ACS Applied Materials & Date: 1, 23198-23206.	8.0	46

#	Article	IF	CITATIONS
19	Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Advanced Functional Materials, 2018, 28, 1800409.	14.9	192
20	Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557.	3.1	70
21	Singleâ€Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO ₄ Photoanodes. Advanced Materials, 2018, 30, e1804033.	21.0	47
22	Scalable Triple Cation Mixed Halide Perovskite–BiVO ₄ Tandems for Biasâ€Free Water Splitting. Advanced Energy Materials, 2018, 8, 1801403.	19.5	128
23	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie, 2018, 130, 10755-10759.	2.0	16
24	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie - International Edition, 2018, 57, 10595-10599.	13.8	93
25	Size Dependence of Electrical Conductivity and Thermoelectric Enhancements in Spinâ€Coated PEDOT:PSS Single and Multiple Layers. Advanced Electronic Materials, 2017, 3, 1600473.	5.1	42
26	In Situ Complementary Doping, Thermoelectric Improvements, and Strain-Induced Structure within Alternating PEDOT:PSS/PANI Layers. ACS Applied Materials & Enterfaces, 2017, 9, 33308-33316.	8.0	30
27	Adjusting the thermoelectric properties of copper(<scp>i</scp>) oxide–graphite–polymer pastes and the applications of such flexible composites. Physical Chemistry Chemical Physics, 2016, 18, 10700-10707.	2.8	33
28	Thermoelectricity in the context of renewable energy sources: joining forces instead of competing. Energy and Environmental Science, 2016, 9, 1528-1532.	30.8	46
29	Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708.	2,5	10
30	Copper(I) oxide based thermoelectric powders and pastes with high Seebeck coefficients. Applied Physics Letters, 2014, 105, .	3.3	22
31	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis., 0,,.		0
32	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis., 0,,.		0