Virgil Andrei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5704856/publications.pdf Version: 2024-02-01

		394421	477307
32	1,410	19	29
papers	citations	h-index	g-index
33	33	33	2156
all docs	docs citations	times ranked	citing authors

VIDCIL ANDREL

#	Article	IF	CITATIONS
1	Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Advanced Functional Materials, 2018, 28, 1800409.	14.9	192
2	Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nature Materials, 2020, 19, 189-194.	27.5	175
3	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	39.5	156
4	Scalable Triple Cation Mixed Halide Perovskite–BiVO ₄ Tandems for Biasâ€Free Water Splitting. Advanced Energy Materials, 2018, 8, 1801403.	19.5	128
5	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie - International Edition, 2018, 57, 10595-10599.	13.8	93
6	Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557.	3.1	70
7	Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting. ACS Energy Letters, 2020, 5, 232-237.	17.4	68
8	Reforming of Soluble Biomass and Plastic Derived Waste Using a Biasâ€Free Cu ₃₀ Pd ₇₀ Perovskite Pt Photoelectrochemical Device. Advanced Functional Materials, 2022, 32, 2109313.	14.9	51
9	Singleâ€Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO ₄ Photoanodes. Advanced Materials, 2018, 30, e1804033.	21.0	47
10	Thermoelectricity in the context of renewable energy sources: joining forces instead of competing. Energy and Environmental Science, 2016, 9, 1528-1532.	30.8	46
11	Triple-Cation-Based Perovskite Photocathodes with AZO Protective Layer for Hydrogen Production Applications. ACS Applied Materials & Interfaces, 2019, 11, 23198-23206.	8.0	46
12	Size Dependence of Electrical Conductivity and Thermoelectric Enhancements in Spin oated PEDOT:PSS Single and Multiple Layers. Advanced Electronic Materials, 2017, 3, 1600473.	5.1	42
13	Long-term solar water and CO2 splitting with photoelectrochemical BiOI–BiVO4 tandems. Nature Materials, 2022, 21, 864-868.	27.5	41
14	Bifunctional Perovskiteâ€BiVO ₄ Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. Advanced Functional Materials, 2021, 31, 2008182.	14.9	36
15	A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€ŧoâ€Formate Efficiency Approaching 1 %. Angewandte Chemie - International Edition, 2021, 60, 26303-26307.	13.8	34
16	Adjusting the thermoelectric properties of copper(<scp>i</scp>) oxide–graphite–polymer pastes and the applications of such flexible composites. Physical Chemistry Chemical Physics, 2016, 18, 10700-10707.	2.8	33
17	Selective CO production from aqueous CO ₂ using a Cu ₉₆ In ₄ catalyst and its integration into a bias-free solar perovskite–BiVO ₄ tandem device. Energy and Environmental Science, 2020, 13, 3536-3543.	30.8	32
18	In Situ Complementary Doping, Thermoelectric Improvements, and Strain-Induced Structure within Alternating PEDOT:PSS/PANI Layers. ACS Applied Materials & Interfaces, 2017, 9, 33308-33316.	8.0	30

VIRGIL ANDREI

#	Article	IF	CITATIONS
19	Copper(I) oxide based thermoelectric powders and pastes with high Seebeck coefficients. Applied Physics Letters, 2014, 105, .	3.3	22
20	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie, 2018, 130, 10755-10759.	2.0	16
21	The effect of post-deposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films. RSC Advances, 2020, 10, 29394-29401.	3.6	13
22	Automated synthesis and characterization techniques for solar fuel production. Nature Reviews Materials, 2022, 7, 251-253.	48.7	11
23	Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708.	2.5	10
24	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
25	A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€ŧoâ€Formate Efficiency Approaching 1 %. Angewandte Chemie, 2021, 133, 26507-26511.	2.0	4
26	Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorganic Chemistry, 2022, 61, 6223-6233.	4.0	4
27	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	3.2	2
28	Waterâ€Assisted Growth: Bifunctional Perovskiteâ€BiVO ₄ Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles (Adv. Funct. Mater. 15/2021). Advanced Functional Materials, 2021, 31, 2170104.	14.9	2
29	Rücktitelbild: A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€toâ€Formate Efficiency Approaching 1 % (Angew. Chem. 50/2021). Angewandte Chemie, 2021, 133, 26616-26616.	2.0	1
30	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis. , 0, , .		0
31	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis. , 0, , .		0
	Defension of Coluble Diseases and Disease Device difference Disease Class		

Reforming of Soluble Biomass and Plastic Derived Waste Using a Biasâ€Free Cu₃₀Pd₇₀ | Perovskite | Pt Photoelectrochemical Device (Adv. Funct. Mater.) Tj ETQq0 0 04gBT /Overlock 10 T 32