
Arti Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570437/publications.pdf Version: 2024-02-01

ADTI SINO

#	Article	IF	CITATIONS
1	Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health?. Frontiers in Plant Science, 2022, 13, 829118.	3.6	62
2	Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping. Trends in Plant Science, 2021, 26, 53-69.	8.8	92
3	Strategies for the utilization of the USDA mung bean germplasm collection for breeding outcomes. Crop Science, 2021, 61, 422-442.	1.8	15
4	Meta-GWAS for quantitative trait loci identification in soybean. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	23
5	Deep Multiview Image Fusion for Soybean Yield Estimation in Breeding Applications. Plant Phenomics, 2021, 2021, 9846470.	5.9	28
6	UAS-Based Plant Phenotyping for Research and Breeding Applications. Plant Phenomics, 2021, 2021, 9840192.	5.9	44
7	Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP). Plant Phenomics, 2021, 2021, 9834746.	5.9	18
8	High-Throughput Phenotyping in Soybean. Concepts and Strategies in Plant Sciences, 2021, , 129-163.	0.5	11
9	How useful is active learning for imageâ€based plant phenotyping?. The Plant Phenome Journal, 2021, 4, e20020.	2.0	21
10	Dissecting the Root Phenotypic and Genotypic Variability of the Iowa Mung Bean Diversity Panel. Frontiers in Plant Science, 2021, 12, 808001.	3.6	4
11	Automated trichome counting in soybean using advanced imageâ€processing techniques. Applications in Plant Sciences, 2020, 8, e11375.	2.1	17
12	Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches. BMC Plant Biology, 2020, 20, 42.	3.6	32
13	Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant Methods, 2020, 16, 5.	4.3	71
14	Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS ONE, 2020, 15, e0230855.	2.5	25
15	Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based Clusters. Plant Phenomics, 2020, 2020, 1925495.	5.9	40
16	Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods, 2019, 15, 98.	4.3	202
17	Mapping quantitative trait loci associated with common bunt resistance in a spring wheat (Triticum) Tj ETQq1 1	0.784314	t rgBT /Overic
18	A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting. Plant	5.9	114

Phenomics, 2019, 2019, 1525874.

5.9 114

Arti Singh

#	Article	IF	CITATIONS
19	An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4613-4618.	7.1	353
20	Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods, 2018, 14, 86.	4.3	105
21	A Novel Multirobot System for Plant Phenotyping. Robotics, 2018, 7, 61.	3.5	24
22	Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends in Plant Science, 2018, 23, 883-898.	8.8	391
23	A deep learning framework to discern and count microscopic nematode eggs. Scientific Reports, 2018, 8, 9145.	3.3	59
24	Computer vision and machine learning for robust phenotyping in genome-wide studies. Scientific Reports, 2017, 7, 44048.	3.3	68
25	Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. Theoretical and Applied Genetics, 2017, 130, 2617-2635.	3.6	27
26	Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Scientific Reports, 2017, 7, 3554.	3.3	57
27	A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods, 2017, 13, 23.	4.3	124
28	Genetic Architecture of Charcoal Rot (Macrophomina phaseolina) Resistance in Soybean Revealed Using a Diverse Panel. Frontiers in Plant Science, 2017, 8, 1626.	3.6	67
29	Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends in Plant Science, 2016, 21, 110-124.	8.8	670
30	Genetic mapping of common bunt resistance and plant height QTL in wheat. Theoretical and Applied Genetics, 2016, 129, 243-256.	3.6	43
31	Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity. Frontiers in Plant Science, 2016, 7, 2066.	3.6	15
32	Genomeâ€wide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean. Plant Journal, 2015, 84, 1124-1136.	5.7	95