Ajar Nath Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5703543/publications.pdf

Version: 2024-02-01

190 papers 7,960 citations

44 h-index

57758

76900 74 g-index

203 all docs

203 docs citations

times ranked

203

3682 citing authors

#	Article	IF	CITATIONS
1	Decolorization and degradation of reactive orange 16 by Bacillus stratosphericus SCA1007. Folia Microbiologica, 2022, 67, 91-102.	2.3	5
2	Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. Microbial Ecology, 2022, 84, 643-675.	2.8	14
3	Life cycle assessment and techno-economic analysis of algae-derived biodiesel: current challenges and future prospects., 2022,, 343-372.		7
4	Bioleaching Approach for Enhancing Sewage Sludge Dewaterability., 2022,, 51-69.		3
5	Correction to: Industrially Important Fungi for Sustainable Development. Fungal Biology, 2022, , C1-C1.	0.6	1
6	Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiologica, 2022, 67, 203-232.	2.3	16
7	Synergistic effect of entomopathogens against Spodoptera litura (Fabricius) under laboratory and greenhouse conditions. Egyptian Journal of Biological Pest Control, 2022, 32, .	1.8	5
8	Nanotechnologies for microbial inoculants as biofertilizers in the horticulture., 2022,, 201-261.		1
9	Effect of Processing Treatments on the Nutritional, Anti-Nutritional, and Bioactive Composition of Blue Maize (Zea Mays L.). Current Research in Nutrition and Food Science, 2022, 10, 171-182.	0.8	1
10	Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon, 2022, 8, e09326.	3.2	25
11	Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals' deficiency in agricultural soil. Journal of Applied Microbiology, 2022, 133, 1245-1272.	3.1	24
12	Organic agriculture for agro-environmental sustainability., 2022,, 699-735.		7
13	Trends of agricultural microbiology for sustainable crops production and economy: An introduction. , 2022, , 1-44.		O
14	Drought adaptive microbes as bioinoculants for the horticultural crops. Heliyon, 2022, 8, e09493.	3.2	19
15	Endosymbiotic microbes from entomopathogenic nematode (EPNs) and their applications as biocontrol agents for agro-environmental sustainability. Egyptian Journal of Biological Pest Control, 2022, 32, .	1.8	10
16	Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challenges. Current Microbiology, 2022, 79, .	2.2	30
17	Microbial consortium of mineral solubilizing and nitrogen fixing bacteria for plant growth promotion of amaranth (Amaranthus hypochondrius L.). Biocatalysis and Agricultural Biotechnology, 2022, 43, 102404.	3.1	15
18	Personalized Nutrition and -Omics. , 2021, , 495-507.		19

#	Article	IF	Citations
19	Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatalysis and Agricultural Biotechnology, 2021, 31, 101883.	3.1	66
20	Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere, 2021, 31, 43-75.	4.0	113
21	Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges. Environmental and Microbial Biotechnology, 2021, , 555-572.	0.7	44
22	Fungal Enzymes: Degradation and Detoxification of Organic and Inorganic Pollutants. Fungal Biology, 2021, , 99-125.	0.6	5
23	Strategies for Abiotic Stress Management in Plants Through Soil RhizobacteriaÂ. Sustainable Development and Biodiversity, 2021, , 287-313.	1.7	1
24	Biodiversity and Biotechnological Applications of Industrially Important Fungi: Current Research and Future Prospects. Fungal Biology, 2021, , 541-572.	0.6	2
25	Soil Microbes with Multifarious Plant Growth Promoting Attributes for Enhanced Production of Food Crops. Sustainable Development and Biodiversity, 2021, , 55-83.	1.7	2
26	Recent Trends in Mycological Research. Fungal Biology, 2021, , .	0.6	9
27	Biodiversity and Ecological Perspective of Industrially Important Fungi An Introduction. Fungal Biology, 2021, , 1-34.	0.6	5
28	Fungi in Remediation of Hazardous Wastes: Current Status and Future Outlook. Fungal Biology, 2021, , 195-224.	0.6	2
29	Understanding Methanogens, Methanotrophs, and Methane Emission in Rice Ecosystem. , 2021, , 205-224.		1
30	Human Fungal Pathogens: Diversity, Genomics, and Preventions. Fungal Biology, 2021, , 371-394.	0.6	3
31	Fungal Secondary Metabolites for Bioremediation of Hazardous Heavy Metals. Fungal Biology, 2021, , 65-98.	0.6	5
32	Fungal Communities for Bioremediation of Contaminated Soil for Sustainable Environments. Fungal Biology, 2021, , 27-42.	0.6	4
33	Phosphate-Solubilizing Fungi: Current Perspective and Future Need for Agricultural Sustainability. Fungal Biology, 2021, , 109-133.	0.6	3
34	Piriformospora indica: Biodiversity, Ecological Significances, and Biotechnological Applications for Agriculture and Allied Sectors. Fungal Biology, 2021, , 363-392.	0.6	1
35	Industrially Important Fungi for Sustainable Development. Fungal Biology, 2021, , .	0.6	11
36	Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. Fungal Biology, 2021, , 497-517.	0.6	1

#	Article	IF	Citations
37	Current Trends in Microbial Biotechnology for Sustainable Agriculture. Environmental and Microbial Biotechnology, $2021, \ldots$	0.7	33
38	Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable Agriculture. Fungal Biology, 2021, , 269-291.	0.6	18
39	Entomopathogenic Soil Microbes for Sustainable Crop Protection. Sustainable Development and Biodiversity, 2021, , 529-571.	1.7	5
40	Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2021, , .	1.7	8
41	Myco-Nanotechnology for Sustainable Agriculture: Challenges and Opportunities. Fungal Biology, 2021, , 457-479.	0.6	14
42	The Omics Strategies for Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants. Sustainable Development and Biodiversity, 2021, , 315-377.	1.7	3
43	Biodiversity and Biotechnological Applications of Extremophilic Microbiomes. , 2021, , 278-290.		17
44	Microbes from Cold Deserts and Their Applications in Mitigation of Cold Stress in Plants. , 2021, , 126-152.		17
45	Cold Adapted Microorganisms. , 2021, , 177-191.		16
46	Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environmental Science and Pollution Research, 2021, 28, 24917-24939.	5.3	134
47	Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatalysis and Agricultural Biotechnology, 2021, 33, 102009.	3.1	57
48	Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. Biocatalysis and Agricultural Biotechnology, 2021, 33, 102005.	3.1	9
49	Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia (Poland), 2021, 76, 2687-2709.	1.5	34
50	Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere, 2021, 284, 131325.	8.2	54
51	Global Scenario of Soil Microbiome Research: Current Trends and Future Prospects. Sustainable Development and Biodiversity, 2021, , 573-603.	1.7	1
52	Functional Annotation and Biotechnological Applications of Soil Microbiomes: Current Research and Future Challenges. Sustainable Development and Biodiversity, 2021, , 605-634.	1.7	0
53	Soil Microbiomes for Healthy Nutrient Recycling. Environmental and Microbial Biotechnology, 2021, , 1-21.	0.7	35
54	Potential Strategies for Control of Agricultural Occupational Health Hazards. Environmental and Microbial Biotechnology, 2021, , 387-402.	0.7	26

#	Article	IF	CITATIONS
55	Industrially Important Fungi for Sustainable Development. Fungal Biology, 2021, , .	0.6	2
56	Fungal Amylases and Their Industrial Applications. Fungal Biology, 2021, , 407-434.	0.6	4
57	Soil and phytomicrobiomes for plant growth and soil fertility. Plant Science Today, 2021, 8, 1-5.	0.7	13
58	Bioprospecting of Industrially Important Mushrooms. Fungal Biology, 2021, , 679-716.	0.6	0
59	Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods, 2021, 10, 2996.	4.3	69
60	Plant growth promotion of barley (Hordeum vulgare L.) by potassium solubilizing bacteria with multifarious plant growth promoting attributes. Plant Science Today, 2021, 8, 17-24.	0.7	10
61	Indigenous entomopathogenic nematode as biocontrol agents for insect pest management in hilly regions. Plant Science Today, 2021, 8, 51-59.	0.7	5
62	Alleviation of Drought Stress and Plant Growth Promotion by Pseudomonas libanensis EU-LWNA-33, a Drought-Adaptive Phosphorus-Solubilizing Bacterium. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 785-795.	1.0	120
63	Microbe-mediated alleviation of drought stress and acquisition of phosphorus in great millet (Sorghum bicolour L.) by drought-adaptive and phosphorus-solubilizing microbes. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101501.	3.1	119
64	Spatial distribution and identification of bacteria in stressed environments capable to weather potassium aluminosilicate mineral. Brazilian Journal of Microbiology, 2020, 51, 751-764.	2.0	42
65	Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101487.	3.1	277
66	Characteristics of an Acidic Phytase from Aspergillus aculeatus APF1 for Dephytinization of Biofortified Wheat Genotypes. Applied Biochemistry and Biotechnology, 2020, 191, 679-694.	2.9	14
67	Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, 2020, , .	0.3	14
68	Fungal secondary metabolites and their biotechnological applications for human health. , 2020, , 147-161.		70
69	Role and potential applications of plant growth-promoting rhizobacteria for sustainable agriculture. , 2020, , 49-60.		47
70	Cyanobacteria: A perspective paradigm for agriculture and environment., 2020,, 215-224.		5
71	Microbial biopesticides: Current status and advancement for sustainable agriculture and environment., 2020,, 243-282.		67
72	Saline microbiome: Biodiversity, ecological significance, and potential role in amelioration of salt stress., 2020,, 283-309.		17

#	Article	IF	CITATIONS
73	Biotechnological applications of seed microbiomes for sustainable agriculture and environment., 2020, , 127-143.		5
74	Microbially derived biosensors for diagnosis, monitoring, and epidemiology for future biomedicine systems., 2020,, 43-65.		5
75	Probiotics, prebiotics, and synbiotics: Current status and future uses for human health. , 2020, , 173-190.		9
76	Tiny microbes, big yields: Microorganisms for enhancing food crop production for sustainable development., 2020,, 1-15.		58
77	Microbial biotechnology for sustainable agriculture: Current research and future challenges. , 2020, , 331-344.		11
78	Microbial Consortium with Multifunctional Plant Growth-Promoting Attributes: Future Perspective in Agriculture. Microorganisms for Sustainability, 2020, , 219-258.	0.7	38
79	Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, 2020, ,	0.7	10
80	Potassium solubilizing and mobilizing microbes: Biodiversity, mechanisms of solubilization, and biotechnological implication for alleviations of abiotic stress., 2020,, 177-202.		22
81	Microwaveâ€assisted synthesis and biological evaluation of pyrazoleâ€4â€carbonitriles as antimicrobial agents. Journal of Heterocyclic Chemistry, 2020, 57, 2936-2944.	2.6	13
82	Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek, 2020, 113, 1075-1107.	1.7	166
83	Agriculturally important microbial biofilms: Biodiversity, ecological significances, and biotechnological applications., 2020,, 221-265.		25
84	Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. , 2020, , 273-305.		25
85	Microbial biofilms: Functional annotation and potential applications in agriculture and allied sectors., 2020,, 283-301.		22
86	Diversity of fungal isolates associated with early blight disease of tomato from mid Himalayan region of India. Archives of Phytopathology and Plant Protection, 2020, 53, 612-624.	1.3	7
87	Oneâ€pot multicomponent synthesis and antimicrobial evaluation of novel tricyclic indenopyrimidineâ€2â€amines. Journal of Heterocyclic Chemistry, 2020, 57, 3622-3631.	2.6	7
88	Mechanistic understanding of the root microbiome interaction for sustainable agriculture in polluted soils., 2020,, 61-84.		26
89	Microbe-mediated biofortification for micronutrients: Present status and future challenges. , 2020, , $1\text{-}17$.		51
90	Microbial Biotechnology Approaches to Monuments of Cultural Heritage. , 2020, , .		9

#	Article	IF	Citations
91	Endophytic microbes in nanotechnology: Current development, and potential biotechnology applications., 2020,, 231-262.		44
92	Endophytic Microbes from Diverse Wheat Genotypes and Their Potential Biotechnological Applications in Plant Growth Promotion and Nutrient Uptake. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 969-979.	1.0	97
93	Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environmental Sustainability, 2020, 3, 23-34.	2.8	123
94	Contribution of microbial phytases to the improvement of plant growth and nutrition: A review. Pedosphere, 2020, 30, 295-313.	4.0	58
95	Diversity, Plant Growth Promoting Attributes, and Agricultural Applications of Rhizospheric Microbes. Sustainable Development and Biodiversity, 2020, , 1-52.	1.7	33
96	Plant Microbiomes for Sustainable Agriculture:ÂCurrent Research and FutureÂChallenges. Sustainable Development and Biodiversity, 2020, , 475-482.	1.7	28
97	Agriculturally Important Fungi for Crop Productivity: Current Research and Future Challenges. Fungal Biology, 2020, , 275-286.	0.6	13
98	Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops. Fungal Biology, 2020, , 171-197.	0.6	33
99	Functional Annotation of Agriculturally Important Fungi for Crop Protection: Current Research and Future Challenges. Fungal Biology, 2020, , 347-356.	0.6	13
100	Advances in Microbial Bioresources for Sustainable Biofuels Production: Current Research and Future Challenges. Biofuel and Biorefinery Technologies, 2020, , 371-387.	0.3	9
101	Transfer of grain softness from 5U-5A wheat-Aegilops triuncialis substitution line to bread wheat through induced homeologous pairing. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 407-417.	1.7	2
102	Biodiversity, phylogenetic profiling, and mechanisms of colonization of seed microbiomes. , 2020, , 99-125.		4
103	Phytases from microbes in phosphorus acquisition for plant growth promotion and soil health. , 2020, , 157-176.		17
104	Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. , 2020, , 255-279.		29
105	Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystems Journal, 2020, 5, 21-47.	0.6	77
106	Microbial biotechnology for sustainable biomedicine systems: Current research and future challenges., 2020,, 281-292.		2
107	Biofuel Production: Global Scenario and Future Challenges. Biofuel and Biorefinery Technologies, 2020, , 337-369.	0.3	1
108	Genetic Manipulation of Secondary Metabolites Producers. , 2019, , 13-29.		31

#	Article	IF	Citations
109	Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture., 2019,, 19-65.		100
110	Bacterial community composition in lakes. , 2019, , 1-71.		4
111	Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia (Poland), 2019, 74, 287-308.	1.5	118
112	Metabolic Engineering to Synthetic Biology of Secondary Metabolites Production., 2019, , 279-320.		46
113	Bioengineering of Secondary Metabolites. , 2019, , 55-68.		28
114	Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia (Poland), 2019, 74, 1031-1043.	1.5	60
115	Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications. Fungal Biology, 2019, , 1-64.	0.6	126
116	Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. Fungal Biology, 2019, , 1-62.	0.6	46
117	Trichoderma: Biodiversity, Ecological Significances, and Industrial Applications. Fungal Biology, 2019, , 85-120.	0.6	58
118	Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects. Biofuel and Biorefinery Technologies, 2019, , 1-50.	0.3	48
119	Current and Future Perspectives on Lipid-Based Biofuels. Biofuel and Biorefinery Technologies, 2019, , 387-429.	0.3	2
120	Prospects of Renewable Bioprocessing in Future Energy Systems. Biofuel and Biorefinery Technologies, 2019, , .	0.3	39
121	Biodiversity of Endophytic Fungi from Diverse Niches and Their Biotechnological Applications. Fungal Biology, 2019, , 105-144.	0.6	125
122	Gene Manipulation and Regulation of Catabolic Genes for Biodegradation of Biphenyl Compounds. , 2019, , 1-23.		11
123	Disruption of Protease Genes in Microbes for Production of Heterologous Proteins. , 2019, , 35-75.		4
124	Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi Journal of Biological Sciences, 2019, 26, 1882-1895.	3.8	134
125	Role of Fungi in Climate Change Abatement Through Carbon Sequestration. Fungal Biology, 2019, , 283-295.	0.6	20
126	Fungal Phytoremediation of Heavy Metal-Contaminated Resources: Current Scenario and Future Prospects. Fungal Biology, 2019, , 437-461.	0.6	50

#	Article	IF	CITATIONS
127	Fungal White Biotechnology: Conclusion and Future Prospects. Fungal Biology, 2019, , 491-498.	0.6	24
128	Genetic Diversity of Methylotrophic Yeast and Their Impact on Environments. Fungal Biology, 2019, , 53-71.	0.6	24
129	Psychrotrophic Microbes: Biodiversity, Mechanisms of Adaptation, and Biotechnological Implications in Alleviation of Cold Stress in Plants. Microorganisms for Sustainability, 2019, , 219-253.	0.7	26
130	Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. Microorganisms for Sustainability, 2019, , 255-308.	0.7	76
131	Molecular Approaches for Combating Multiple Abiotic Stresses in Crops of Arid and Semi-arid Region. Energy, Environment, and Sustainability, 2019, , 149-170.	1.0	47
132	Biodegradation of biphenyl compounds by soil microbiomes. Biodiversity International Journal, 2019, 3, 37-40.	0.6	7
133	Regioselective Synthesis of Potent 4,5,6,7-Tetrahydroindazole Derivatives via Microwave-assisted Vilsmeier-Haack Reaction and their Antioxidant Activity Evaluation. Letters in Organic Chemistry, 2019, 16, 194-201.	0.5	8
134	Biodiversity of psychrotrophic microbes and their biotechnological applications. Journal of Applied Biology & Biotechnology, 2019, 7, 99-108.	1.1	57
135	Bioprospecting of phosphorus solubilizing bacteria from Renuka Lake Ecosystems, Lesser Himalayas. Journal of Applied Biology & Biotechnology, 2019, 7, 1-6.	1.1	13
136	Psychrotrophic Microbiomes: Molecular Diversity and Beneficial Role in Plant Growth Promotion and Soil Health. Microorganisms for Sustainability, 2018, , 197-240.	0.7	44
137	Microbes in Termite Management: Potential Role and Strategies. , 2018, , 197-217.		19
138	Microbiome in Crops: Diversity, Distribution, and Potential Role in Crop Improvement., 2018, , 305-332.		67
139	Biodiversity of the Genus Penicillium in Different Habitats. , 2018, , 3-18.		105
140	Actinobacteria from Rhizosphere. , 2018, , 13-41.		86
141	Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs. Journal of Applied Biotechnology & Bioengineering, 2018, 5, .	0.1	10
142	Schmidt Reaction on Substituted 1-Indanones / N-Alkylation: Synthesis of Benzofused Six-membered Ring Lactams and their Evaluation as Antimicrobial Agents. Letters in Organic Chemistry, 2018, 15, 606-613.	0.5	6
143	Study on the activity and diversity of bacteria in a New Gangetic alluvial soil (Eutrocrept) under rice-wheatjute cropping system. Journal of Environmental Biology, 2018, 39, 379-386.	0.5	28
144	l̂ ² -Propeller phytases: Diversity, catalytic attributes, current developments and potential biotechnological applications. International Journal of Biological Macromolecules, 2017, 98, 595-609.	7.5	77

#	Article	IF	Citations
145	Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing, 2017, 4, .	4.2	289
146	Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech, 2017, 7, 118.	2.2	94
147	Potassium-Solubilizing Microbes: Diversity, Distribution, and Role in Plant Growth Promotion. Microorganisms for Sustainability, 2017, , 125-149.	0.7	49
148	Beneficial Plant-Microbes Interactions: Biodiversity of Microbes from Diverse Extreme Environments and Its Impact for Crop Improvement., 2017,, 543-580.		106
149	Draft Genome Sequence of Halolamina pelagica CDK2 Isolated from Natural Salterns from Rann of Kutch, Gujarat, India. Genome Announcements, 2017, 5, .	0.8	37
150	Production and characterization of a neutral phytase of Penicillium oxalicum EUFR-3 isolated from Himalayan region. Nusantara Bioscience, 2017, 9, 68-76.	0.6	34
151	Extreme Cold Environments: A Suitable Niche for Selection of Novel Psychrotrophic Microbes for Biotechnological Applications. Advances in Biotechnology & Microbiology (Newbury, Calif), 2017, 2, .	0.5	59
152	Plant Growth Promoting Bacteria: Biodiversity and Multifunctional Attributes for Sustainable Agriculture. Advances in Biotechnology & Microbiology (Newbury, Calif), 2017, 5, .	0.5	28
153	Plant Microbiomes and Its Beneficial Multifunctional Plant Growth Promoting Attributes. International Journal of Environmental Sciences & Natural Resources, 2017, 3, .	0.1	63
154	Integrated Disease Management of Storage Rot of Ginger (Zingiber officinale) caused by Fusarium sp. in Himachal Pradesh, India. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 3580-3592.	0.1	8
155	Agriculturally Important Micro biomes: Biodiversity and Multifarious PGP Attributes for Amelioration of Diverse Abiotic Stresses in Crops for Sustainable Agriculture. Biomedical Journal of Scientific & Technical Research, 2017, 1, .	0.1	13
156	Beneficial role of extremophilic microbes for plant health and soil fertility., 2017, 01, .		21
157	Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three subâ€glacial lakes of NW Indian Himalayas. Journal of Basic Microbiology, 2016, 56, 294-307.	3.3	133
158	Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (<i>Triticum aestivum</i> L.) rhizosphere from six diverse agroâ€ecological zones of India. Journal of Basic Microbiology, 2016, 56, 44-58.	3.3	229
159	First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Standards in Genomic Sciences, 2016, 11, 54.	1.5	78
160	Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture. , 2016, , 117-143.		136
161	Development of Hydrogel Based Bio-Inoculant Formulations and their Impact on Plant Biometric Parameters of Wheat (Triticum aestivum L.). International Journal of Current Microbiology and Applied Sciences, 2016, 5, 890-901.	0.1	38
162	Microbial Diversity of Extreme Regions: An Unseen Heritage and Wealth. Indian Journal of Plant Genetic Resources, 2016, 29, 246.	0.1	85

#	Article	IF	Citations
163	Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian Journal of Experimental Biology, 2016, 54, 142-50.	0.0	70
164	Haloarchaea Endowed with Phosphorus Solubilization Attribute Implicated in Phosphorus Cycle. Scientific Reports, 2015, 5, 12293.	3.3	138
165	Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 2015, 65, 1885-1899.	2.6	245
166	Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. Journal of Bioscience and Bioengineering, 2015, 119, 683-693.	2.2	179
167	Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World Journal of Microbiology and Biotechnology, 2015, 31, 95-108.	3.6	132
168	Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Annals of Microbiology, 2015, 65, 611-629.	2.6	129
169	Evaluating the Diversity of Culturable Thermotolerant Bacteria from Four Hot Springs of India. Journal of Biodiversity Bioprospecting and Development, 2014, 01, .	0.4	5
170	Genetic and functional diversity of fluorescent <i>Pseudomonas</i> from rhizospheric soils of wheat crop. Journal of Basic Microbiology, 2014, 54, 425-437.	3.3	18
171	Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 2014, 60, 349-366.	2.6	82
172	Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Annals of Microbiology, 2014, 64, 741-751.	2.6	63
173	Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 2013, 55, 107-116.	3.2	125
174	Phylogenetic Diversity and Characterization of Novel and Efficient Cellulase Producing Bacterial Isolates from Various Extreme Environments. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1474-1480.	1.3	84
175	Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek, 2012, 101, 777-786.	1.7	131
176	Beneficial plant-microbe interactions for agricultural sustainability. Journal of Applied Biology & Biotechnology, 0, , .	1.1	33
177	Microbial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites. Journal of Applied Biology & Biotechnology, 0, , .	1.1	7
178	Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). Journal of Applied Biology & Biotechnology, 0, , .	1.1	4
179	Biodiversity and bioprospecting of extremophilic microbiomes for agro-environmental sustainability. Journal of Applied Biology & Biotechnology, 0, , .	1.1	3
180	Beneficial effects of soaking and germination on nutritional quality and bioactive compounds of biofortified wheat derivatives. Journal of Applied Biology & Biotechnology, 0, , .	1.1	0

#	Article	IF	CITATIONS
181	Phytomicrobiomes for agro-environmental sustainability. Journal of Applied Biology & Biotechnology, 0, , .	1.1	1
182	Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. Journal of Applied Biology & Biotechnology, 0, , .	1.1	5
183	Beneficial microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health. Journal of Applied Biology & Biotechnology, 0, , .	1.1	25
184	Nanotechnology for agro-environmental sustainability. Journal of Applied Biology & Biotechnology, 0, , .	1.1	0
185	Microbes for Agricultural and Environmental Sustainability. Journal of Applied Biology & Biotechnology, 0, , .	1.1	3
186	Effect of diverse fermentation treatments on nutritional composition, bioactive components, and anti-nutritional factors of finger millet (Eleusine coracana L.). Journal of Applied Biology & Biotechnology, 0, , 46-52.	1.1	9
187	Influence of soaking and germination treatments on the nutritional, anti-nutritional, and bioactive composition of pigeon pea (Cajanus cajan L.). Journal of Applied Biology & Biotechnology, 0, , 127-134.	1.1	6
188	Impact of diverse processing treatments on nutritional and anti-nutritional characteristics of soybean (Glycine max L.). Journal of Applied Biology & Biotechnology, 0, , 97-105.	1.1	0
189	Phosphate-Solubilizing Microorganisms for Agricultural Sustainability. Journal of Applied Biology & Biotechnology, 0, , 1-6.	1.1	3
190	Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). , 0, , .		10