Nobuyuki Yoshikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570306/publications.pdf

Version: 2024-02-01

322 papers 4,401 citations

172457 29 h-index 50 g-index

325 all docs

325 docs citations

times ranked

325

852 citing authors

#	Article	IF	CITATIONS
1	An adiabatic quantum flux parametron as an ultra-low-power logic device. Superconductor Science and Technology, 2013, 26, 035010.	3.5	266
2	Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation. IEICE Transactions on Electronics, 2014, E97.C, 132-140.	0.6	132
3	Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm ^{â^2} niobium fabrication process. Superconductor Science and Technology, 2017, 30, 035002.	3.5	97
4	Dynamic Characteristics of Inverter Circuits Using Single Electron Transistors. Japanese Journal of Applied Physics, 1995, 34, 1332-1338.	1.5	93
5	Adiabatic quantum-flux-parametron cell library adopting minimalist design. Journal of Applied Physics, 2015, 117, .	2.5	90
6	Design and Implementation of a Pipelined Bit-Serial SFQ Microprocessor, \${m CORE}1eta\$. IEEE Transactions on Applied Superconductivity, 2007, 17, 474-477.	1.7	87
7	Bit-Serial Single Flux Quantum Microprocessor CORE. IEICE Transactions on Electronics, 2008, E91-C, 342-349.	0.6	83
8	100 GHz Demonstrations Based on the Single-Flux-Quantum Cell Library for the 10 kA/cm2 Nb Multi-Layer Process. IEICE Transactions on Electronics, 2010, E93-C, 440-444.	0.6	68
9	Measurement of $10\mathrm{zJ}$ energy dissipation of adiabatic quantum-flux-parametron logic using a superconducting resonator. Applied Physics Letters, 2013, 102, .	3.3	65
10	Reduction of power consumption of RSFQ circuits by inductance-load biasing. Superconductor Science and Technology, 1999, 12, 918-920.	3.5	64
11	Superconducting digital electronics. Proceedings of the IEEE, 2004, 92, 1549-1563.	21.3	64
12	New Nb multi-layer fabrication process for large-scale SFQ circuits. Physica C: Superconductivity and Its Applications, 2009, 469, 1578-1584.	1.2	64
13	Demonstration of a Single-Flux-Quantum Microprocessor Using Passive Transmission Lines. IEEE Transactions on Applied Superconductivity, 2005, 15, 400-404.	1.7	62
14	Margin and Energy Dissipation of Adiabatic Quantum-Flux-Parametron Logic at Finite Temperature. IEEE Transactions on Applied Superconductivity, 2013, 23, 1700304-1700304.	1.7	58
15	Reversible logic gate using adiabatic superconducting devices. Scientific Reports, 2014, 4, 6354.	3.3	58
16	Energy efficiency of adiabatic superconductor logic. Superconductor Science and Technology, 2015, 28, 015003.	3.5	54
17	Study of LR-Loading Technique for Low-Power Single Flux Quantum Circuits. IEEE Transactions on Applied Superconductivity, 2007, 17, 150-153.	1.7	50
18	ColdFlux Superconducting EDA and TCAD Tools Project: Overview and Progress. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	50

#	Article	IF	Citations
19	MANA: A Monolithic Adiabatic iNtegration Architecture Microprocessor Using 1.4-zJ/op Unshunted Superconductor Josephson Junction Devices. IEEE Journal of Solid-State Circuits, 2021, 56, 1152-1165.	5.4	49
20	An adiabatic superconductor 8-bit adder with $24 < i > k < i > B < i > T < i > energy dissipation per junction. Applied Physics Letters, 2019, 114, .$	3.3	47
21	Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line. Applied Physics Letters, 2004, 84, 2133-2135.	3.3	45
22	Simulation of sub- $\langle i \rangle k \langle i \rangle B \langle i \rangle T \langle i \rangle$ bit-energy operation of adiabatic quantum-flux-parametron logic with low bit-error-rate. Applied Physics Letters, 2013, 103, .	3.3	38
23	Characterization of 4 K CMOS Devices and Circuits for Hybrid Josephson-CMOS Systems. IEEE Transactions on Applied Superconductivity, 2005, 15, 267-271.	1.7	37
24	Proposal of a Desk-Side Supercomputer with Reconfigurable Data-Paths Using Rapid Single-Flux-Quantum Circuits. IEICE Transactions on Electronics, 2008, E91-C, 350-355.	0.6	37
25	Data-driven self-timed RSFQ high-speed test system. IEEE Transactions on Applied Superconductivity, 1997, 7, 3830-3833.	1.7	32
26	Pseudo Sigmoid Function Generator for a Superconductive Neural Network. IEEE Transactions on Applied Superconductivity, 2013, 23, 1701004-1701004.	1.7	31
27	Simulation and Experimental Demonstration of Logic Circuits Using an Ultra-Low-Power Adiabatic Quantum-Flux-Parametron. IEEE Transactions on Applied Superconductivity, 2013, 23, 1301105-1301105.	1.7	31
28	Possibility of Kosterlitz-Thouless effect at the resistive transition of high Tc oxide superconductors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 125, 429-431.	2.1	30
29	Design of a pipelined 8-bit-serial single-flux-quantum microprocessor with multiple ALUs. Superconductor Science and Technology, 2006, 19, S344-S349.	3.5	30
30	Demonstration of 30 Gbit/s Generation of Superconductive True Random Number Generator. IEEE Transactions on Applied Superconductivity, 2011, 21, 843-846.	1.7	30
31	Large-Scale Integrated Circuit Design Based on a Nb Nine-Layer Structure for Reconfigurable Data-Path Processors. IEICE Transactions on Electronics, 2014, E97.C, 157-165.	0.6	29
32	Thermodynamic Study of Energy Dissipation in Adiabatic Superconductor Logic. Physical Review Applied, 2015, 4, .	3.8	29
33	Top-down RSFQ logic design based on a binary decision diagram. IEEE Transactions on Applied Superconductivity, 2001, 11, 1098-1101.	1.7	28
34	Design and component test of a tiny processor based on the SFQ technology. IEEE Transactions on Applied Superconductivity, 2003, 13, 441-445.	1.7	28
35	Design and Implementation of a Fully Asynchronous SFQ Microprocessor: SCRAM2. IEEE Transactions on Applied Superconductivity, 2007, 17, 478-481.	1.7	28
36	Design and implementation of a pipelined 8 bit-serial single-flux-quantum microprocessor with cache memories. Superconductor Science and Technology, 2007, 20, S305-S309.	3.5	28

#	Article	IF	Citations
37	Implementation and Experimental Evaluation of a Cryocooled System Prototype for High-Throughput SFQ Digital Applications. IEEE Transactions on Applied Superconductivity, 2007, 17, 546-551.	1.7	28
38	Majority-Logic-Optimized Parallel Prefix Carry Look-Ahead Adder Families Using Adiabatic Quantum-Flux-Parametron Logic. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-7.	1.7	28
39	Fully Functional Operation of Low-Power 64-kb Josephson-CMOS Hybrid Memories. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-7.	1.7	27
40	Adiabatic Quantum-Flux-Parametron: Towards Building Extremely Energy-Efficient Circuits and Systems. Scientific Reports, 2019, 9, 10514.	3.3	27
41	A stochastic-computing based deep learning framework using adiabatic quantum-flux-parametron superconducting technology. , 2019, , .		27
42	Advanced Direct Synthesis Approach for High Selectivity In-Line Topology Filters Comprising \$N\$ - 1 Adjacent Frequency-Variant Couplings. IEEE Access, 2019, 7, 41659-41668.	4.2	27
43	100-GHz Single-Flux-Quantum Bit-Serial Adder Based on 10-\${m kA/cm}^{2}\$ Niobium Process. IEEE Transactions on Applied Superconductivity, 2011, 21, 792-796.	1.7	26
44	HDL-Based Modeling Approach for Digital Simulation of Adiabatic Quantum Flux Parametron Logic. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	25
45	Design and Implementation of a 16-Word by 1-Bit Register File Using Adiabatic Quantum Flux Parametron Logic. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	25
46	Synthesis Flow for Cell-Based Adiabatic Quantum-Flux-Parametron Structural Circuit Generation With HDL Back-End Verification. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	25
47	Design methodology of single-flux-quantum flip-flops composed of both 0- and ⟨i⟩Ï€⟨/i⟩-shifted Josephson junctions. Superconductor Science and Technology, 2018, 31, 105003.	3.5	25
48	Superconductive Random Number Generator Using Thermal Noises in SFQ Circuits. IEEE Transactions on Applied Superconductivity, 2009, 19, 630-633.	1.7	24
49	Design, Implementation and On-Chip High-Speed Test of SFQ Half-Precision Floating-Point Multiplier. IEEE Transactions on Applied Superconductivity, 2009, 19, 657-660.	1.7	24
50	16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder. IEEE Transactions on Applied Superconductivity, 2013, 23, 1700605-1700605.	1.7	24
51	8-Bit Asynchronous Sparse-Tree Superconductor RSFQ Arithmetic-Logic Unit With a Rich Set of Operations. IEEE Transactions on Applied Superconductivity, 2013, 23, 1700104-1700104.	1.7	24
52	Structure-Parameter Dependence of Modality of Macroscopic Quantum Effect in Superconductor Junction (I) –Tunnel-Type Junction–. Japanese Journal of Applied Physics, 1989, 28, 1816-1824.	1.5	23
53	Simulation and Measurements on a 64-kbit Hybrid Josephson-CMOS Memory. IEEE Transactions on Applied Superconductivity, 2005, 15, 415-418.	1.7	23
54	High-Speed Demonstration of Bit-Serial Floating-Point Adders and Multipliers Using Single-Flux-Quantum Circuits. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-6.	1.7	23

#	Article	IF	Citations
55	Three-dimensional adiabatic quantum-flux-parametron fabricated using a double-active-layered niobium process. Superconductor Science and Technology, 2017, 30, 075003.	3.5	23
56	Development and Demonstration of Routing and Placement EDA Tools for Large-Scale Adiabatic Quantum-Flux-Parametron Circuits. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-9.	1.7	23
57	Low-latency adiabatic superconductor logic using delay-line clocking. Applied Physics Letters, 2019, 115, .	3.3	23
58	Reversibility and energy dissipation in adiabatic superconductor logic. Scientific Reports, 2017, 7, 75.	3.3	22
59	A semi-custom design methodology and environment for implementing superconductor adiabatic quantum-flux-parametron microprocessors. Superconductor Science and Technology, 2020, 33, 054006.	3.5	22
60	Self-timing and vector processing in RSFQ digital circuit technology. IEEE Transactions on Applied Superconductivity, 1999, 9, 7-17.	1.7	21
61	Design and implementation of SFQ programmable clock generators. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1550-1554.	1.2	21
62	Josephson-CMOS Hybrid Memory With Nanocryotrons. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-4.	1.7	21
63	Measurement of low bit-error-rates of adiabatic quantum-flux-parametron logic using a superconductor voltage driver. Applied Physics Letters, 2017, 110, .	3.3	21
64	A Majority Logic Synthesis Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits. , 2019, , .		21
65	Implementation of a 4 <tex>\$times\$</tex> 4 Switch With Passive Interconnects. IEEE Transactions on Applied Superconductivity, 2005, 15, 356-359.	1.7	20
66	20-GHz 8 \$imes\$ 8-bit Parallel Carry-Save Pipelined RSFQ Multiplier. IEEE Transactions on Applied Superconductivity, 2013, 23, 1300104-1300104.	1.7	20
67	Josephson-CMOS hybrid memory with ultra-high-speed interface circuit. IEEE Transactions on Applied Superconductivity, 2003, 13, 467-470.	1.7	19
68	Design and Implementation and On-Chip High-Speed Test of SFQ Half-Precision Floating-Point Adders. IEEE Transactions on Applied Superconductivity, 2009, 19, 634-639.	1.7	19
69	Novel latch for adiabatic quantum-flux-parametron logic. Journal of Applied Physics, 2014, 115, 103910.	2.5	19
70	A new design approach for RSFQ logic circuits based on the binary decision diagram. IEEE Transactions on Applied Superconductivity, 1999, 9, 3161-3164.	1.7	18
71	Design of single flux quantum cells for a 10-Nb-layer process. Physica C: Superconductivity and Its Applications, 2009, 469, 1670-1673.	1.2	18
72	An Operand Routing Network for an SFQ Reconfigurable Data-Paths Processor. IEEE Transactions on Applied Superconductivity, 2009, 19, 665-669.	1.7	18

#	Article	IF	Citations
73	Adiabatic quantum-flux-parametron interface for the readout of superconducting nanowire single-photon detectors. Optics Express, 2017, 25, 32650.	3.4	18
74	Scalable readout interface for superconducting nanowire single-photon detectors using AQFP and RSFQ logic families. Optics Express, 2020, 28, 15824.	3.4	18
75	A behavioral-level HDL description of SFQ logic circuits for quantitative performance analysis of large-scale SFQ digital systems. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1495-1500.	1.2	17
76	Single-Flux-Quantum (SFQ) Circuit Design and Test of Crossbar Switch Scheduler. IEEE Transactions on Applied Superconductivity, 2005, 15, 423-426.	1.7	17
77	Reduction of the supply current of single-flux-quantum time-to-digital converters by current recycling techniques. IEEE Transactions on Applied Superconductivity, 2017, , 1-1.	1.7	17
78	Adiabatic Quantum-Flux-Parametron: A Tutorial Review. IEICE Transactions on Electronics, 2022, E105.C, 251-263.	0.6	17
79	RSFQ multiplexer and demultiplexer. IEEE Transactions on Applied Superconductivity, 1999, 9, 3310-3313.	1.7	16
80	Design and Investigation of Gate-to-Gate Passive Interconnections for SFQ Logic Circuits. IEEE Transactions on Applied Superconductivity, 2005, 15, 3814-3820.	1.7	16
81	Planarization Process for Fabricating Multi-Layer Nb Integrated Circuits Incorporating Top Active Layer. IEEE Transactions on Applied Superconductivity, 2009, 19, 167-170.	1.7	16
82	A compact AQFP logic cell design using an 8-metal layer superconductor process. Superconductor Science and Technology, 2020, 33, 035010.	3.5	16
83	Complementary Digital Logic Using Resistively Coupled Single-Electron Transistor. Japanese Journal of Applied Physics, 1996, 35, 1140-1145.	1.5	15
84	Engineering issues in high-frequency RSFQ circuits. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1-6.	1.2	15
85	Latency and Power Measurements on a 64-kb Hybrid Josephson-CMOS Memory. IEEE Transactions on Applied Superconductivity, 2007, 17, 526-529.	1.7	15
86	On-chip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits. Physica C: Superconductivity and Its Applications, 2010, 470, 1550-1554.	1.2	15
87	Synthesis and Design of Quasi-Canonical Planar Filters Comprising Cascaded Frequency-Variant Blocks. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 671-681.	4.6	15
88	Design and implementation of circuit components of the SFQ microprocessor, CORE1. Superconductor Science and Technology, 2004, 17, 301-307.	3.5	14
89	20 GHz Operation of Bit-Serial Handshaking Systems Using Asynchronous SFQ Logic Circuits. IEEE Transactions on Applied Superconductivity, 2005, 15, 255-258.	1.7	14
90	SFQ Pulse Transfer Circuits Using Inductive Coupling for Current Recycling. IEEE Transactions on Applied Superconductivity, 2009, 19, 649-652.	1.7	14

#	Article	IF	Citations
91	Fabrication of Adiabatic Quantum-Flux-Parametron Integrated Circuits Using an Automatic Placement Tool Based on Genetic Algorithms. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	14
92	Design and Characterization of Track Routing Architecture for RSFQ and AQFP Circuits in a Multilayer Process. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-9.	1.7	14
93	Dual Conduction Characteristics Observed in Highly Resistive NbN Granular Thin Films. Japanese Journal of Applied Physics, 1987, 26, 949.	1.5	13
94	High-Speed Demonstration of Single-Flux-Quantum Cross–Bar Switch up to 50 GHz. IEEE Transactions on Applied Superconductivity, 2005, 15, 6-10.	1.7	13
95	Research on Effective Moat Configuration for Nb Multi-Layer Device Structure. IEEE Transactions on Applied Superconductivity, 2009, 19, 603-606.	1.7	13
96	Demonstration of a 47.8ÂGHz High-Speed FFT Processor Using Single-Flux-Quantum Technology. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	13
97	Development of Passive Interconnection Technology for SFQ Circuits. IEICE Transactions on Electronics, 2005, E88-C, 198-207.	0.6	13
98	The Relationship Between Bit-Error Rate, Operating Speed and Circuit Scale of SFQ Circuits. IEEE Transactions on Applied Superconductivity, 2005, 15, 364-367.	1.7	12
99	Quantitative evaluation of delay time in the single-flux-quantum circuit. Physica C: Superconductivity and Its Applications, 2007, 463-465, 1068-1071.	1.2	12
100	3D simulation of superconducting microwave devices with an electromagnetic-field simulator. Physica C: Superconductivity and Its Applications, 2009, 469, 1662-1665.	1.2	12
101	Superconductor Amoeba-Inspired Problem Solvers for Combinatorial Optimization. Physical Review Applied, 2019, 11, .	3.8	12
102	A Buffer and Splitter Insertion Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits. , 2019, , .		12
103	Component test toward single-flux-quantum processors. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1490-1494.	1.2	11
104	Design and component test of SFQ shift register memories. IEEE Transactions on Applied Superconductivity, 2003, 13, 555-558.	1.7	11
105	Design and high-speed test of (4 $\tilde{A}-$ 8)-bit single-flux-quantum shift register files. Superconductor Science and Technology, 2003, 16, 1456-1459.	3.5	11
106	Quantitative Evaluation of the Single-Flux- Quantum Cross/Bar Switch. IEEE Transactions on Applied Superconductivity, 2005, 15, 324-327.	1.7	11
107	Progress of Single Flux Quantum Packet Switch Technology. IEEE Transactions on Applied Superconductivity, 2005, 15, 411-414.	1.7	11
108	Access time measurements of Josephson–CMOS hybrid memory using single-flux-quantum circuits. Superconductor Science and Technology, 2006, 19, S350-S353.	3.5	11

#	Article	IF	Citations
109	Design of an SFQ Microwave Chopper for Controlling Quantum Bits. IEEE Transactions on Applied Superconductivity, 2007, 17, 146-149.	1.7	11
110	Demonstration of 10k Gate-Scale Adiabatic-Quantum-Flux-Parametron Circuits., 2015,,.		11
111	Fast and accurate inductance and coupling calculation for a multi-layer Nb process. Superconductor Science and Technology, 2015, 28, 035013.	3.5	11
112	Demonstration of single-flux-quantum readout circuits for time-of-flight mass spectrometry systems using superconducting strip ion detectors. Superconductor Science and Technology, 2015, 28, 074003.	3.5	11
113	Evaluation of current sensitivity of quantum flux parametron. Superconductor Science and Technology, 2017, 30, 084004.	3.5	11
114	Minimum energy dissipation required for a logically irreversible operation. Physical Review E, 2018, 97, 012124.	2.1	11
115	Systematic method to evaluate energy dissipation in adiabatic quantum-flux-parametron logic. Journal of Applied Physics, 2019, 126, .	2.5	11
116	A reversible full adder using adiabatic superconductor logic. Superconductor Science and Technology, 2019, 32, 035005.	3.5	11
117	Low-latency power-dividing clocking scheme for adiabatic quantum-flux-parametron logic. Applied Physics Letters, 2020, 116, .	3.3	11
118	Design and High-Speed Demonstration of Single-Flux-Quantum Bit-Serial Floating-Point Multipliers Using a 10kA/cm ² Nb Process. IEICE Transactions on Electronics, 2014, E97.C, 188-193.	0.6	11
119	Demonstration of a Single-Flux-Quantum Microprocessor Operating With Josephson-CMOS Hybrid Memory. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-6.	1.7	11
120	Macroscopic Quantum Effect Conjugate to Josephson Effect. Journal of the Physical Society of Japan, 1984, 53, 3146-3152.	1.6	10
121	Structure-Parameter Dependence of Modality of Macroscopic Quantum Effect in Superconductor Junction (II) –Linked Junction–. Japanese Journal of Applied Physics, 1991, 30, 263-273.	1.5	10
122	Hybrid Josephson-CMOS memory: a solution for the Josephson memory problem. Superconductor Science and Technology, 2002, 15, 1669-1674.	3.5	10
123	Signal integrity in large-scale single-flux-quantum circuit. Physica C: Superconductivity and Its Applications, 2006, 445-448, 1003-1007.	1.2	10
124	A New Design Approach for High-Throughput Arithmetic Circuits for Single-Flux-Quantum Microprocessors. IEEE Transactions on Applied Superconductivity, 2007, 17, 516-519.	1.7	10
125	Design Approach of Dynamically Reconfigurable Single Flux Quantum Logic Gates. IEEE Transactions on Applied Superconductivity, 2011, 21, 831-834.	1.7	10
126	Design and Implementation of 64-kb CMOS Static RAMs for Josephson-CMOS Hybrid Memories. IEEE Transactions on Applied Superconductivity, 2013, 23, 1700704-1700704.	1.7	10

#	Article	IF	CITATIONS
127	Design and demonstration of adiabatic quantum-flux-parametron logic circuits with superconductor magnetic shields. Superconductor Science and Technology, 2015, 28, 045020.	3.5	10
128	Inductance and Coupling of Stacked Vias in a Multilayer Superconductive IC Process. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	10
129	Majority Gate-Based Feedback Latches for Adiabatic Quantum Flux Parametron Logic. IEICE Transactions on Electronics, 2016, E99.C, 710-716.	0.6	10
130	Design and Demonstration of an Adiabatic-Quantum-Flux-Parametron Field-Programmable Gate Array Using Josephson-CMOS Hybrid Memories. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	10
131	AQFPTX: Adiabatic Quantum-Flux-Parametron Timing eXtraction Tool. , 2019, , .		10
132	A Compact Interface Between Adiabatic Quantum-Flux-Parametron and Rapid Single-Flux-Quantum Circuits. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	10
133	Logic Synthesis of Sequential Logic Circuits for Adiabatic Quantum-Flux-Parametron Logic. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	10
134	Design and Demonstration of a Single-Flux-Quantum Multi-Stop Time-to-Digital Converter for Time-of-Flight Mass Spectrometry. IEICE Transactions on Electronics, 2014, E97.C, 182-187.	0.6	10
135	Design and component test of RSFQ packet decoders for shift register memories. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1475-1480.	1.2	9
136	Diagnostic Test of Large-Scale SFQ Shift Register. IEEE Transactions on Applied Superconductivity, 2007, 17, 422-425.	1.7	9
137	New Delay-Time Measurements on a 64-kb Josephson–CMOS Hybrid Memory With a 600-ps Access Time. IEEE Transactions on Applied Superconductivity, 2010, 20, 14-20.	1.7	9
138	Design and Implementation of Component Circuits of an SFQ Half-Precision Floating-Point Adder Using 10-kA/cm\$^{2}\$ Nb Process. IEEE Transactions on Applied Superconductivity, 2011, 21, 827-830.	1.7	9
139	Development of Pulse Transfer Circuits for Serially Biased SFQ Circuits Using the Nb 9-Layer 1-\$muhbox{m}\$ Process. IEEE Transactions on Applied Superconductivity, 2013, 23, 1300504-1300504.	1.7	9
140	Design and Implementation of an SFQ-Based Single-Chip FFT Processor. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.7	9
141	Superconducting Digital Electronics for Controlling Quantum Computing Systems. IEICE Transactions on Electronics, 2019, E102.C, 217-223.	0.6	9
142	MANA: A Monolithic Adiabatic iNtegration Architecture Microprocessor using 1.4z]/op Superconductor Josephson Junction Devices. , 2020, , .		9
143	Binary Counters Using Adiabatic Quantum-Flux-Parametron Logic. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	9
144	Impedance Design of Excitation Lines in Adiabatic Quantum-Flux-Parametron Logic Using InductEx. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	9

#	Article	IF	Citations
145	Adiabatic Quantum-Flux-Parametron Constant Cells using Asymmetrical Structures. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 747-752.	0.2	9
146	Directly coupled adiabatic superconductor logic. Superconductor Science and Technology, 2020, 33, 065002.	3.5	9
147	Field-Effect Induced Sinusoidal Conductivity Variation of NbN Granular Thin Film. Japanese Journal of Applied Physics, 1987, 26, L1701-L1702.	1.5	8
148	A cell-based design approach for RSFQ circuits using a binary decision diagram. Superconductor Science and Technology, 1999, 12, 782-785.	3.5	8
149	Simulation and 18 Gb/s testing of a data-driven self-timed RSFQ demultiplexer. IEEE Transactions on Applied Superconductivity, 1999, 9, 4349-4352.	1.7	8
150	Design and component test of a 1-bit RSFQ microprocessor. Physica C: Superconductivity and Its Applications, 2002, 378-381, 1454-1460.	1.2	8
151	Single-flux-quantum integer multiplier with systolic array structure. Physica C: Superconductivity and Its Applications, 2006, 445-448, 1014-1019.	1.2	8
152	The influence of the ground current on large-scale single-flux-quantum circuits. Superconductor Science and Technology, 2006, 19, S362-S365.	3.5	8
153	Clock Line Considerations for an SFQ Large Scale Reconfigurable Data Paths Processor. IEEE Transactions on Applied Superconductivity, 2011, 21, 809-813.	1.7	8
154	Development of Bit-Serial RSFQ Microprocessors Integrated with Shift-Register-Based Random Access Memories. , $2015, , .$		8
155	Inductance and Current Distribution Extraction in Nb Multilayer Circuits with Superconductive and Resistive Components. IEICE Transactions on Electronics, 2016, E99.C, 683-691.	0.6	8
156	Multi-excitation adiabatic quantum-flux-parametron. Journal of Applied Physics, 2017, 121, .	2.5	8
157	Recent Progress on Reversible Quantum-Flux-Parametron for Superconductor Reversible Computing. IEICE Transactions on Electronics, 2018, E101.C, 352-358.	0.6	8
158	Adiabatic quantum-flux-parametron with π Josephson junctions. Journal of Applied Physics, 2019, 125, .	2.5	8
159	Low-Autocorrelation Random Number Generator Based on Adiabatic Quantum-Flux-Parametron Logic. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	8
160	Buffer Reduction Via N-Phase Clocking in Adiabatic Quantum-Flux-Parametron Benchmark Circuits. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-8.	1.7	8
161	ASAP., 2020, , .		8
162	Quantization of dielectric flux in phase-quantum-tunnel junction. IEEE Transactions on Magnetics, 1987, 23, 1130-1133.	2.1	7

#	Article	IF	CITATIONS
163	Quantized Electrical Field Effect in Granular Superconductor Thin Films. Japanese Journal of Applied Physics, 1990, 29, 1086-1096.	1.5	7
164	Coulomb blockade and electrical field effect in nanoscale granular microbridges. Applied Physics Letters, 1995, 67, 3969-3971.	3.3	7
165	Anomalous Effect inLa2-xSrxCuO4of Doping Levelx=1/4n. Japanese Journal of Applied Physics, 1996, 35, 1221-1224.	1.5	7
166	Component development for a 16 Gb/s RSFQ-CMOS interface system. IEEE Transactions on Applied Superconductivity, 2001, 11, 735-738.	1.7	7
167	A cell-based design approach for RSFQ circuits based on binary decision diagram. IEEE Transactions on Applied Superconductivity, 2001, 11 , 263-266.	1.7	7
168	Single flux quantum circuit technology innovation for backbone router applications. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1478-1484.	1.2	7
169	Error Rate Test of Large-Scale SFQ Digital Circuit Systems. IEEE Transactions on Applied Superconductivity, 2005, 15, 427-430.	1.7	7
170	Design of a reconfigurable data-path prototype in the single-flux-quantum circuit. Superconductor Science and Technology, 2007, 20, S328-S331.	3.5	7
171	High-Speed Experimental Demonstration of Adiabatic Quantum-Flux-Parametron Gates Using Quantum-Flux-Latches. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	7
172	Design Method of Single-Flux-Quantum Logic Circuits Using Dynamically Reconfigurable Logic Gates. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	7
173	Demonstration of Signal Transmission between Adiabatic Quantum-Flux-Parametrons and Rapid Single-Flux-Quantum Circuits Using Superconductive Microstrip Lines. IEEE Transactions on Applied Superconductivity, $2016, 11.$	1.7	7
174	Simulation of the Margins in Single Flux Quantum Circuits Containing π-Shifted Josephson Junctions. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	7
175	Adiabatic quantum-flux-parametron with delay-line clocking: logic gate demonstration and phase skipping operation. Superconductor Science and Technology, 2021, 34, 125002.	3.5	7
176	Cell-based top-down design methodology for RSFQ digital circuits. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1529-1539.	1.2	6
177	Design of a datapath for single-flux-quantum microprocessors with multiple ALUs. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1693-1698.	1.2	6
178	Design and implementation of double oscillator time-to-digital converter using SFQ logic circuits. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1699-1703.	1.2	6
179	Improvement of time resolution of the double-oscillator time-to-digital converter using SFQ circuits. Physica C: Superconductivity and Its Applications, 2007, 463-465, 1088-1091.	1.2	6
180	A High-Throughput Single-Flux Quantum Floating-Point Serial Divider Using the Signed-Digit Representation. IEEE Transactions on Applied Superconductivity, 2009, 19, 653-656.	1.7	6

#	Article	IF	Citations
181	High-Speed Test of a Radix-2 Butterfly Processing Element for Fast Fourier Transforms Using SFQ Circuits. IEEE Transactions on Applied Superconductivity, 2011, 21, 823-826.	1.7	6
182	Design and demonstration of an on-chip AC power source for adiabatic quantum-flux-parametron logic. Superconductor Science and Technology, 2013, 26, 035018.	3. 5	6
183	Reduction of the jitter of single-flux-quantum time-to-digital converters for time-of-flight mass spectrometry. Physica C: Superconductivity and Its Applications, 2014, 504, 97-101.	1.2	6
184	IDE Development, Logic Synthesis and Buffer/Splitter Insertion Framework for Adiabatic Quantum-Flux-Parametron Superconducting Circuits. , 2019, , .		6
185	Standard Cell Layout Synthesis for Row-Based Placement and Routing of RSFQ and AQFP Logic Families. , 2019, , .		6
186	Compact RSFQ microwave pulse generator based on an integrated RF module for controlling superconducting qubits. Applied Physics Letters, 2022, 120, .	3.3	6
187	Experiment of filed-effect transistor with a channel made of NbN granular thin film. IEEE Transactions on Magnetics, 1989, 25, 1270-1273.	2.1	5
188	Anomalous ac dielectric response and carrier state of c-axis oriented La2â^'xSrxCuO4 films. Physica C: Superconductivity and Its Applications, 1997, 293, 216-219.	1.2	5
189	Data-driven self-timed RSFQ demultiplexer. Applied Superconductivity, 1998, 6, 361-365.	0.5	5
190	Single Electron Transfer Logic Gate Family. Japanese Journal of Applied Physics, 1999, 38, 433-438.	1.5	5
191	High-speed test of SFQ-shift register files using PTL wiring. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1586-1590.	1.2	5
192	Advanced Design Approaches for SFQ Logic Circuits Based on the Binary Decision Diagram. IEEE Transactions on Applied Superconductivity, 2005, 15, 380-383.	1.7	5
193	On-chip microwave generator for manipulation of superconductive quantum bits. Physica C: Superconductivity and Its Applications, 2006, 445-448, 967-970.	1.2	5
194	A new design approach for control circuits of pipelined single-flux-quantum microprocessors. Superconductor Science and Technology, 2006, 19, S340-S343.	3 . 5	5
195	High-speed demonstration of low-power 1 k-bit shift-register memories using LR-biasing SFQ circuits. IEICE Electronics Express, 2016, 13, 20160074-20160074.	0.8	5
196	Design and Implementation of Scalable Register Files Using Adiabatic Quantum Flux Parametron Logic. , 2017, , .		5
197	A random-access-memory cell based on quantum flux parametron with three control lines. Journal of Physics: Conference Series, 2018, 1054, 012063.	0.4	5
198	Design of Adiabatic Quantum-Flux-Parametron Register Files Using a Top-Down Design Flow. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	5

#	Article	IF	CITATIONS
199	Compact Superconducting Lookup Table Composed of Two-Dimensional Memory Cell Array Reconfigured by External DC Control Currents. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-6.	1.7	5
200	An Adiabatic Superconductor Comparator With 46 nA Sensitivity. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	5
201	Design and Evaluation of Magnetic Field Tolerant Single Flux Quantum Circuits for Superconductive Sensing Systems. IEICE Transactions on Electronics, 2014, E97.C, 178-181.	0.6	5
202	50 GHz Demonstration of an Integer-Type Butterfly Processing Circuit for an FFT Processor Using the 10 kA/cm ² Nb Process. IEICE Transactions on Electronics, 2015, E98.C, 232-237.	0.6	5
203	Possibility of Dual Macroscopic Quantum Phenomena in 2D Superconductor Granular System. Japanese Journal of Applied Physics, 1987, 26, 1411.	1.5	5
204	Phase-quantum tunnel device. IEEE Transactions on Magnetics, 1985, 21, 935-938.	2.1	4
205	Sub-micron field-effect transistor using granular NbN thin films. IEEE Transactions on Applied Superconductivity, 1993, 3, 1987-1990.	1.7	4
206	Study of electrical conduction properties of NbN thin films using NbN/MgO/NbN double-tunnel junctions. Superconductor Science and Technology, 1996, 9, A152-A155.	3.5	4
207	High-speed testing of tandem-Banyan network switch component. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1485-1489.	1.2	4
208	Prototypic design of the single-flux-quantum microprocessor, CORE1. Superconductor Science and Technology, 2003, 16, 1460-1463.	3.5	4
209	Josephson Latching Driver With a Low Bit-Error Rate. IEEE Transactions on Applied Superconductivity, 2004, 14, 2031-2036.	1.7	4
210	High-speed measurement method of quantized energy levels in Josephson junctions using SFQ circuits. Physica C: Superconductivity and Its Applications, 2004, 412-414, 1546-1549.	1.2	4
211	Hybrid Josephson-CMOS Memory in Advanced Technologies and Larger Sizes. Journal of Physics: Conference Series, 2006, 43, 1171-1174.	0.4	4
212	Bit-Error-Rate Measurements of RSFQ Shift Register Memories. IEEE Transactions on Applied Superconductivity, 2007, 17, 512-515.	1.7	4
213	Superconductive Single-Flux-Quantum Circuit/System Technology and 40Gb/s Switch System Demonstration., 2008,,.		4
214	Direct measurements of propagation delay of single-flux-quantum circuits by time-to-digital converters. IEICE Electronics Express, 2008, 5, 332-337.	0.8	4
215	Design of fast digit-serial adders using SFQ logic circuits. IEICE Electronics Express, 2009, 6, 1408-1413.	0.8	4
216	Multiplexing Techniques of Single Flux Quantum Circuit Based Readout Circuit for a Multi-Channel Sensing System. IEEE Transactions on Applied Superconductivity, 2013, 23, 2500204-2500204.	1.7	4

#	Article	IF	Citations
217	Yield analysis of large-scale adiabatic-quantum-flux-parametron logic: The effect of the distribution of the critical current. Physica C: Superconductivity and Its Applications, 2014, 504, 102-105.	1.2	4
218	Magnetically coupled quantum-flux-latch with wide operation margins. Superconductor Science and Technology, 2015, 28, 115013.	3.5	4
219	Power Reduction of Josephson Random Access Memory Using Stochastic Resonance. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-4.	1.7	4
220	Thermally Assisted Superconductor Transistors for Josephson-CMOS Hybrid Memories. IEICE Transactions on Electronics, 2018, E101.C, 370-377.	0.6	4
221	Influence of Magnetic Flux Trapped in Moats on Superconducting Integrated Circuit Operation. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	4
222	Demonstration of Picosecond Time Resolution in Double-Oscillator Time-to-Digital Converter Using Single-Flux-Quantum Circuits. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	4
223	Sharp-selectivity in-line topology low temperature superconducting bandpass filter for superconducting quantum applications. Superconductor Science and Technology, 2020, 33, 035012.	3.5	4
224	Evaluation of flux trapping moat position on AQFP cell performance. Journal of Physics: Conference Series, 2021, 1975, 012027.	0.4	4
225	Design and Demonstration of Directly Coupled Quantum-Flux-Parametron Circuits With Optimized Parameters. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-5.	1.7	4
226	Planarized Nb 4-Layer Fabrication Process for Superconducting Integrated Circuits and Its Fabricated Device Evaluation. IEICE Transactions on Electronics, 2021, E104.C, 435-445.	0.6	4
227	Reversible Computing Using Adiabatic Superconductor Logic. Lecture Notes in Computer Science, 2014, , 15-25.	1.3	4
228	A 16-Bit Parallel Prefix Carry Look-Ahead Kogge-Stone Adder Implemented in Adiabatic Quantum-Flux-Parametron Logic. IEICE Transactions on Electronics, 2022, E105.C, 270-276.	0.6	4
229	New FET using the superconducting phase transition of a high temperature oxide superconductor. Superconductor Science and Technology, 1991, 4, 468-470.	3.5	3
230	Parameter limit of the Josephson effect in small superconducting microbridges. IEEE Transactions on Magnetics, 1991, 27, 3272-3275.	2.1	3
231	Proximity effect in the SN interface of high-T/sub c/ superconductors: Tunnel spectroscopy and surface impedance. IEEE Transactions on Magnetics, 1991, 27, 1328-1331.	2.1	3
232	Observation of Single-Electron Charging Effect in BiSrCaCuO Granular Thin Films. Japanese Journal of Applied Physics, 1993, 32, L1516-L1519.	1.5	3
233	Cell based design methodology for BDD SFQ logic circuits: A high speed test and feasibility for large scale circuit applications. IEEE Transactions on Applied Superconductivity, 2003, 13, 523-526.	1.7	3
234	Design of the speedup buffer for the single-flux-quantum network switch. Superconductor Science and Technology, 2003, 16, 1452-1455.	3.5	3

#	Article	IF	Citations
235	Observation of Quantized Energy Levels in a Josephson Junction Using SFQ Circuits. IEEE Transactions on Applied Superconductivity, 2005, 15, 864-867.	1.7	3
236	Novel serial–parallel converter using SFQ logic circuits. Physica C: Superconductivity and Its Applications, 2008, 468, 1977-1982.	1.2	3
237	Pulse-Height Distribution Analysis for Superconducting Nanostripline Ion Detector with a Fast Pulse-Integration Analog-Todigital Converter. Physics Procedia, 2012, 36, 172-176.	1.2	3
238	Simulation and implementation of an 8-bit carry look-ahead adder using adiabatic quantum-flux-parametron. , 2013, , .		3
239	Improvement of Operating Margin of SFQ Circuits by Controlling Dependence of Signal Propagation Time on Bias Voltage. IEEE Transactions on Applied Superconductivity, 2013, 23, 1300904-1300904.	1.7	3
240	Asynchronous Digital SQUID Magnetometer With an On-Chip Magnetic Feedback for Improvement of Magnetic Resolution. IEEE Transactions on Applied Superconductivity, 2013, 23, 1601405-1601405.	1.7	3
241	Design and high-speed tests of a single-flux-quantum time-to-digital converter for time-of-flight mass spectrometry., 2013,,.		3
242	High-Speed Operation of a Single Flux Quantum Multiple Input Merger Using a Magnetically Coupled SQUID Stack. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	3
243	Demonstration of a Superconducting Nanowire Single-Photon Detector using Adiabatic Quantum-Flux-Parametron Logic in a 0.1-W Gifford-McMahon Cryocooler. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.7	3
244	Towards AQFP-Capable Physical Design Automation., 2021,,.		3
245	Josephson Junctions for Digital Applications. Springer Series in Materials Science, 2019, , 611-701.	0.6	3
246	Proposal of ultra-low voltage quantum well optical modulator for optical interconnection in superconducting integrated circuit systems. Japanese Journal of Applied Physics, 2020, 59, SOOB01.	1.5	3
247	Discontinuity of Magnetic Flux Trapped in Multiply Connected Superconductor. Progress of Theoretical Physics, 1987, 78, 957-962.	2.0	2
248	The circuits of phase-quantum-tunneling device. IEEE Transactions on Magnetics, 1989, 25, 1286-1289.	2.1	2
249	Single-Electron-Tunneling Effect in Nanoscale Granular Microbridges. Japanese Journal of Applied Physics, 1997, 36, 4161-4165.	1.5	2
250	Logic operation at 5 gb/s of an output interface for single-flux-quantum systems. IEEE Transactions on Applied Superconductivity, 2003, 13, 3814-3816.	1.7	2
251	A new design approach based on a multi-wiring-layer process for high-density SFQ circuits. Superconductor Science and Technology, 2003, 16, 1464-1469.	3.5	2
252	Consideration of logic synthesis and clock distribution networks for SFQ logic circuits. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1687-1692.	1.2	2

#	Article	IF	CITATIONS
253	40-GHz operation of a single-flux-quantum (SFQ) 4×4 switch scheduler. Physica C: Superconductivity and Its Applications, 2006, 445-448, 1008-1013.	1.2	2
254	Operation of an Adiabatic Quantum-Flux-Parametron Gate Using an On-Chip AC Power Source. IEEE Transactions on Applied Superconductivity, 2013, 23, 1301605-1301605.	1.7	2
255	Modeling and calibration of ADP process for inductance calculation with InductEx. , 2013, , .		2
256	A Reconfigurable Data-Path Accelerator Based on Single Flux Quantum Circuits. IEICE Transactions on Electronics, 2014, E97.C, 141-148.	0.6	2
257	Grounding Methods to Reduce Stray Coupling in Multi-Layer Layouts. , 2015, , .		2
258	Demonstration of Bit-Serial SFQ-Based Computing for Integer Iteration Algorithms. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	2
259	Improvement of Operation Speed of LR-Biased Low-Power Single-Flux Quantum Circuits by Introduction of Dynamic Resetting of Bias Currents. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	2
260	Statistical analysis of error rate of large-scale single flux quantum logic circuit by considering fluctuation of timing parameters. Physica C: Superconductivity and Its Applications, 2016, 530, 101-103.	1.2	2
261	Miniaturization of adiabatic quantum-flux-parametron circuits by adopting offset buffers. Superconductor Science and Technology, 2019, 32, 065007.	3.5	2
262	Design of Discrete Hopfield Neural Network Using a Single Flux Quantum Circuit. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-4.	1.7	2
263	Demonstration of Single-Flux-Quantum 64-B Lookup Table With Cryo-CMOS Decoders for Reconfiguration. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	2
264	Experiment on Phase-Quantum-Tunneling Device. Journal of the Physical Society of Japan, 1985, 54, 3051-3060.	1.6	1
265	Charge and flux fluctuation and new macroscopic quantum effect in weakly linked superconductor junctions. Physica B: Condensed Matter, 1990, 165-166, 937-938.	2.7	1
266	Experimental study of a field-effect transistor using granular thin films. IEEE Transactions on Magnetics, 1991, 27, 3268-3271.	2.1	1
267	Study of the Physical Properties of High-Temperature Oxide Superconductors Based on Superfluidity Models. Japanese Journal of Applied Physics, 1992, 31, L604-L607.	1.5	1
268	Fabrication and characterization of HTS/semiconductor three terminal device. IEEE Transactions on Applied Superconductivity, 1993, 3, 1957-1960.	1.7	1
269	Measurement of conduction properties of highly resistive superconducting microbridges. IEEE Transactions on Applied Superconductivity, 1993, 3, 1991-1994.	1.7	1
270	Influence of inhomogeneity on correlated single-electron tunneling in one-dimensional array of small tunnel junctions. Physica B: Condensed Matter, 1994, 194-196, 1309-1310.	2.7	1

#	Article	IF	CITATIONS
271	Electrical field effect in highly resistive NbN microbridge. IEEE Transactions on Applied Superconductivity, 1995, 5, 3090-3093.	1.7	1
272	Fabrication of Pd Nanostructures with Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1995, 34, L1221-L1223.	1.5	1
273	Anomalous dielectric effect of La/sub 2-x/Sr/sub x/CuO/sub 4/. IEEE Transactions on Applied Superconductivity, 1997, 7, 3520-3523.	1.7	1
274	Implementation and low speed test of ultra-fast interface circuits for Josephson-CMOS hybrid memories. Physica C: Superconductivity and Its Applications, 2003, 392-396, 1467-1471.	1.2	1
275	Design and implementation of a high-speed bit-serial SFQ adder based on the binary decision diagram. Superconductor Science and Technology, 2003, 16, 1497-1502.	3.5	1
276	Parameter optimization of a Josephson latching driver based on bit-error-rate simulations. Physica C: Superconductivity and Its Applications, 2005, 426-431, 1680-1686.	1.2	1
277	Design and implementation of low-power SFQ circuits using LR-load biasing technique. Physica C: Superconductivity and Its Applications, 2006, 445-448, 1029-1033.	1.2	1
278	Design and Implementation of RSFQ Microwave Choppers for the Superconducting Quantum-Computing System. IEICE Transactions on Electronics, 2010, E93-C, 458-462.	0.6	1
279	Statistical Evaluation of a Superconductive Physical Random Number Generator. IEICE Transactions on Electronics, 2010, E93-C, 453-457.	0.6	1
280	Integration of Optical Waveguides With Single Flux Quantum Circuits. IEEE Transactions on Applied Superconductivity, 2011, 21, 839-842.	1.7	1
281	Experimental Demonstration of an Operand Routing Network Prototype Employing Clock Control and Data Synchronization Scheme. Physics Procedia, 2012, 36, 349-353.	1.2	1
282	Demonstration of fully functional 64-kb Josephson/CMOS hybrid memory. , 2013, , .		1
283	Experimental demonstration of quantum-flux-latch-based circuits. IEEE Transactions on Applied Superconductivity, 2014, , 1-1.	1.7	1
284	A Feedback-Friendly Large-Scale Clocking Scheme for Adiabatic Quantum-Flux-Parametron Logic Datapaths. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	1
285	Frequency synchronization of single flux quantum oscillators. Superconductor Science and Technology, 2021, 34, 105004.	3.5	1
286	Research Progress of Low-power Superconducting Integrated Circuits. IEEJ Transactions on Fundamentals and Materials, 2016 , 136 , 734 - 739 .	0.2	1
287	Design of Binary Convolution Operation Circuit for Binarized Neural Networks Using Single-Flux-Quantum Circuit. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	1
288	Transmission Line Effects of Long Gate-to-Gate Interconnections in Adiabatic Quantum-Flux-Parametron Logic Circuits. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-7.	1.7	1

#	Article	IF	CITATIONS
289	Quantized electrostatic field effects in the disordered two-dimensional systems of superconducting small particles. Physica B: Condensed Matter, 1990, 165-166, 961-962.	2.7	O
290	Multi-bit memory effect in highly resistive granular superconductor films. Superconductor Science and Technology, 1992, 5, 111-114.	3.5	0
291	Flux and Charge Quanta in Junctions and Macroscopic Quantum Effect. Japanese Journal of Applied Physics, 1993, 32, 681-684.	1.5	0
292	Anomalous electric characteristic of La2â^'xSrxCuO4 at x=1/4n. European Physical Journal D, 1996, 46, 1165-1166.	0.4	0
293	Memory-processor interface with hybridCMOS-RSFQ echnology. Applied Superconductivity, 1998, 6, 355-360.	0.5	0
294	Design and testing of data-driven self-timed RSFQ shift register. Applied Superconductivity, 1999, 6, 585-589.	0.5	0
295	Cell-based design methodology for BDD RSFQ logic circuits: tolerance of basic cells to circuit parameter variations. Superconductor Science and Technology, 2002, 15, 156-160.	3.5	0
296	Access time measurement of 64-kb Josephson-CMOS hybrid memories using SFQ time-to-digital converter. IEICE Electronics Express, 2010, 7, 320-325.	0.8	0
297	Design and Evaluation of Multi-Flux-Quantum Drivers Using Under-Damped Josephson Junctions. IEEE Transactions on Applied Superconductivity, 2011, 21, 835-838.	1.7	0
298	Optimization of SFQ Logic Gate Considering Dependence of its Signal Propagation Delay on the Bias Voltage. Physics Procedia, 2014, 58, 216-219.	1.2	0
299	High-Speed Superconductive Decimation Filter for Sigma-Delta Analog to Digital Converter. Journal of Physics: Conference Series, 2017, 871, 012068.	0.4	0
300	Matrix Synthesis of Cascaded K-Tuplets Filters with Frequency-Variant Couplings. , 2018, , .		0
301	Investigation of the Effects of $1/f$ Noise on Superconducting Circuits. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-4.	1.7	0
302	Trends in Low-Temperature Circuit Technology to Control Quantum Bits for Large-Scale Quantum Computers. IEEJ Transactions on Fundamentals and Materials, 2021, 141, 20-21.	0.2	0
303	Demonstration of an efficient single flux quantum logic circuit by introducing a local magnetic flux biasing. Superconductor Science and Technology, 2021, 34, 055007.	3.5	0
304	Design and Evaluation of 2-bit-Input Single-Flux-Quantum Autocorrelator System for Astronomical Data Analysis. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.7	0
305	Development of High-speed and Low-power Microprocessors using Superconductive Circuits. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 369-372.	0.2	0
306	New Fields Opened Up by Superconducting Detector Technology. IEEJ Transactions on Fundamentals and Materials, 2011, 131, 34-37.	0.2	0

#	Article	IF	Citations
307	Recent Progress of Superconducting Integrated Circuit Technologies Challenging the Limits in Low Power Consumption. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 14-17.	0.2	0
308	Structural Parameter Dependence of the Quantum Behavior of Small Superconductor Junctions. , $1989, , 749-754.$		0
309	Quantum Phase Fluctuation and Conduction Properties of Highly Resistive Superconducting Weak Links. , 1992, , 97-100.		0
310	30GHz Operation of Single-Flux-Quantum Arithmetic Logic Unit Implemented by Using Dynamically Reconfigurable Gates. IEICE Transactions on Electronics, 2016, E99.C, 692-696.	0.6	0
311	Toward the Creation of Future Technologies based on Superconductivity. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 18-20.	0.2	0
312	Superconducting Time-of-flight Mass Spectrometry Systems for Biomolecules using Superconducting Digital Circuits. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2017, 52, 349-354.	0.1	0
313	Research Trends and New Developments in Phase Engineering. IEEJ Transactions on Fundamentals and Materials, 2017, 137, 23-25.	0.2	0
314	Toward the Creation of Future Technologies based on Superconductivity Electronics. IEEJ Transactions on Fundamentals and Materials, 2018, 138, 25-27.	0.2	0
315	Trend of Future Technologies based on Superconducting Electronics. IEEJ Transactions on Fundamentals and Materials, 2019, 139, 20-21.	0.2	0
316	Investigation on Ultra-Low Voltage Quantum Well Optical Modulator for Optical Interconnection for Superconducting Integrated Circuits., 2019,,.		0
317	"Research Unit on Extremely Energy-Efficient processor,―Institute of Advanced Sciences/"Yoshikawa & Yamanashi Laboratory,―Graduate School of Engineering Science, Yokohama National University. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2020, 55, 201-202.	0.1	0
318	A high-speed interface based on a Josephson latching driver for adiabatic quantum-flux-parametron logic. IEICE Transactions on Electronics, 2021, , .	0.6	0
319	Boltzmann Machine Using Superconducting Circuits. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	0
320	Research Trends on Low-power, High-performance Superconducting Computer Technology. IEEJ Transactions on Fundamentals and Materials, 2022, 142, 19-20.	0.2	0
321	Adiabatic Quantum-Flux-Parametron With Delay-Line Clocking Using Square Excitation Currents. IEICE Transactions on Electronics, 2022, , .	0.6	0
322	Timing Controller for a Superconductor Microwave Switch using Adiabatic Quantum Flux Parametron Circuits. IEEJ Transactions on Fundamentals and Materials, 2022, 142, 197-201.	0.2	0