
Bradford D Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing the stigma surrounding opioid use disorder: evaluating an opioid overdose prevention training program applied to a diverse population. Harm Reduction Journal, 2022, 19, 5.	3.2	6
2	Assessing the synergistic effects of morphine and MPâ€IIIâ€024 coâ€administration: enhanced antinociception with reduced side effects. FASEB Journal, 2022, 36, .	0.5	0
3	Synergistic antihyperalgesic and antinociceptive effects of morphine and methyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepine-3-carboxylate (MP-III-024): a positive allosteric modulator at α2GABAA and α3GABAA receptors. Psychopharmacology, 2021, 238, 1585-1592.	3.1	6
4	Supraâ€additive effects of morphine and the α2/3 preferring GABA _A receptor ligand MPâ€Illâ€024 on mechanical hyperalgesia and thermal nociception. FASEB Journal, 2021, 35, .	0.5	0
5	The CB1 Negative Allosteric Modulator PSNCBAMâ€1 Reduces Ethanol Selfâ€Administration via a Nonspecific Hypophagic Effect. FASEB Journal, 2021, 35, .	0.5	0
6	Effectiveness of a Team-Based Learning exercise in the learning outcomes of a medical pharmacology course: insight from struggling students. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 1941-1948.	3.0	3
7	Abuse Liability, Anti-Nociceptive, and Discriminative Stimulus Properties of IBNtxA. ACS Pharmacology and Translational Science, 2020, 3, 907-920.	4.9	3
8	Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years. Medical Teacher, 2019, 41, 167-171.	1.8	2
9	Cognitive and behavioral effects of brief seizures in mice. Epilepsy and Behavior, 2019, 98, 249-257.	1.7	2
10	Pharmacological and antihyperalgesic properties of the novel $\hat{1}\pm 2/3$ preferring GABA A receptor ligand MP-III-024. Brain Research Bulletin, 2017, 131, 62-69.	3.0	23
11	Chronic exposure to tumor necrosis factor in vivo induces hyperalgesia, upregulates sodium channel gene expression and alters the cellular electrophysiology of dorsal root ganglion neurons. Neuroscience Letters, 2017, 653, 195-201.	2.1	38
12	Response rate decreasing effects of naloxone during chronic sucrose availability. Behavioural Pharmacology, 2017, 28, 401-404.	1.7	1
13	Animal models of rheumatoid pain: experimental systems and insights. Arthritis Research and Therapy, 2017, 19, 146.	3.5	47
14	GABA _A Receptors as Targets for the Management of Pain-related Disorders: Historical Perspective and Update. CNS and Neurological Disorders - Drug Targets, 2017, 16, 658-663.	1.4	6
15	Antagonism of triazolam self-administration in rhesus monkeys responding under a progressive-ratio schedule: In vivo apparent pA2 analysis. Drug and Alcohol Dependence, 2016, 158, 22-29.	3.2	8
16	Behavioral effects of the novel benzodiazepine analog methyl 8â€ethynylâ€6â€{pyridinâ€2â€yl)â€4Hâ€benzo[f]imidazo[1,5â€a][1,4]diazepineâ€3 arboxylate (MPâ€IIIâ€02 29, 616.13.	4ò).₽ASEB	Journal, 201
17	Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation. Psychopharmacology, 2013, 227, 347-354.	3.1	17
	Painforcing Effects Of Compounds Lacking Intrinsic Efficacy At I+1 Subunit-Containing CABAA Pacantor		

Reinforcing Effects Of Compounds Lacking Intrinsic Efficacy At α1 Subunit-Containing GABAA Receptor18Subtypes in Midazolam- But Not Cocaine-Experienced Rhesus Monkeys. Neuropsychopharmacology,5.4212013, 38, 1006-1014.5.421

BRADFORD D FISCHER

#	Article	IF	CITATIONS
19	Opioid antinociception, tolerance and dependence. Behavioural Pharmacology, 2011, 22, 540-547.	1.7	9
20	Contribution of GABAA receptors containing α3 subunits to the therapeutic-related and side effects of benzodiazepine-type drugs in monkeys. Psychopharmacology, 2011, 215, 311-319.	3.1	24
21	Anticonflict and Reinforcing Effects of Triazolam + Pregnanolone Combinations in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 805-811.	2.5	16
22	Attenuation of morphine antinociceptive tolerance by a CB1 receptor agonist and an NMDA receptor antagonist: Interactive effects. Neuropharmacology, 2010, 58, 544-550.	4.1	26
23	Anxiolytic-like effects of 8-acetylene imidazobenzodiazepines in a rhesus monkey conflict procedure. Neuropharmacology, 2010, 59, 612-618.	4.1	55
24	Increased efficacy of μ-opioid agonist-induced antinociception by metabotropic glutamate receptor antagonists in C57BL/6 mice: comparison with (â^')-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959). Psychopharmacology, 2008, 198, 271-278.	3.1	26
25	Morphine in Combination with Metabotropic Glutamate Receptor Antagonists on Schedule-Controlled Responding and Thermal Nociception. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 732-739.	2.5	15
26	Interactions between an N-Methyl-D-aspartate Antagonist and Low-Efficacy Opioid Receptor Agonists in Assays of Schedule-Controlled Responding and Thermal Nociception. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 1300-1306.	2.5	15
27	Effects of N-Methyl-D-Aspartate Receptor Antagonists on Acute Morphine-Induced and I-Methadone-Induced Antinociception in Mice. Journal of Pain, 2005, 6, 425-433.	1.4	36
28	Antagonism of the Antinociceptive and Discriminative Stimulus Effects of Heroin and Morphine by 3-Methoxynaltrexone and Naltrexone in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 264-273.	2.5	34
29	Lack of evidence for opioid tolerance or dependence in rhesus monkeys following high-dose anabolic–androgenic steroid administration. Psychoneuroendocrinology, 2001, 26, 789-796.	2.7	17