
Anton V Zavialov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/570267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosphingolipids Recognized by Acinetobacter baumannii. Microorganisms, 2020, 8, 612.	3.6	5
2	Comparison of kinetic and enzymatic properties of intracellular phosphoserine aminotransferases from alkaliphilic and neutralophilic bacteria. Open Chemistry, 2020, 18, 149-164.	1.9	1
3	A new human challenge model for testing heat-stable toxin-based vaccine candidates for enterotoxigenic Escherichia coli diarrhea – dose optimization, clinical outcomes, and CD4+ T cell responses. PLoS Neglected Tropical Diseases, 2019, 13, e0007823.	3.0	15
4	Secreted bacterial adenosine deaminase is an evolutionary precursor of adenosine deaminase growth factor. Molecular Biology and Evolution, 2018, 35, 2851-2861.	8.9	3
5	Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. Journal of Biological Chemistry, 2018, 293, 17070-17080.	3.4	5
6	Structural basis for <i>Acinetobacter baumannii</i> biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5558-5563.	7.1	122
7	Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion. Frontiers in Cellular and Infection Microbiology, 2018, 8, 80.	3.9	12
8	Methylation, crystallization and SAD phasing of the Csu pilus CsuC–CsuE chaperone–adhesin subunit pre-assembly complex from Acinetobacter baumannii. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 450-454.	0.8	6
9	Structural basis for Myf and Psa fimbriaeâ€mediated tropism of pathogenic strains of <i>Yersinia</i> for host tissues. Molecular Microbiology, 2016, 102, 593-610.	2.5	14
10	Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis. PLoS Pathogens, 2015, 11, e1005269.	4.7	32
11	Crystallization and preliminary X-ray diffraction analysis of the Csu pili CsuC–CsuA/B chaperone–major subunit pre-assembly complex from <i>Acinetobacter baumannii</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 770-774.	0.8	7
12	Structural Insight into Host Recognition by Aggregative Adherence Fimbriae of Enteroaggregative Escherichia coli. PLoS Pathogens, 2014, 10, e1004404.	4.7	38
13	Early-Onset Stroke and Vasculopathy Associated with Mutations in ADA2. New England Journal of Medicine, 2014, 370, 911-920.	27.0	687
14	Crystallization and sulfur SAD phasing of AggA, the major subunit of aggregative adherence fimbriae type I from theEscherichia colistrain that caused an outbreak of haemolytic-uraemic syndrome in Germany. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1389-1392.	0.7	2
15	Large Is Fast, Small Is Tight: Determinants of Speed and Affinity in Subunit Capture by a Periplasmic Chaperone. Journal of Molecular Biology, 2012, 417, 294-308.	4.2	25
16	Crystal structure of enterotoxigenic <i><scp>E</scp>scherichia coli</i> colonization factor <scp>CS</scp> 6 reveals a novel type of functional assembly. Molecular Microbiology, 2012, 86, 1100-1115.	2.5	28
17	Allosteric Mechanism Controls Traffic in the Chaperone/Usher Pathway. Structure, 2012, 20, 1861-1871.	3.3	27
18	Metacaspases Cell Death and Differentiation 2011 18 1279-1288	11.9	202

11.2 292

ANTON V ZAVIALOV

#	Article	IF	CITATIONS
19	Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiology Reviews, 2010, 34, 317-378.	8.6	84
20	Structural Basis for the Growth Factor Activity of Human Adenosine Deaminase ADA2. Journal of Biological Chemistry, 2010, 285, 12367-12377.	3.4	99
21	Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. Journal of Leukocyte Biology, 2010, 88, 279-290.	3.3	192
22	Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nature Cell Biology, 2009, 11, 1347-1354.	10.3	192
23	Caf1A usher possesses a Caf1 subunit-like domain that is crucial for Caf1 fibre secretion. Biochemical Journal, 2009, 418, 541-551.	3.7	15
24	A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M. Molecular Microbiology, 2007, 64, 153-164.	2.5	20
25	A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M. Molecular Microbiology, 2007, 64, 872-872.	2.5	0
26	FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiology Reviews, 2007, 31, 478-514.	8.6	65
27	The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Molecular Microbiology, 2006, 61, 1556-1568.	2.5	139
28	Receptor binding studies disclose a novel class of highâ€affinity inhibitors of the <i>Escherichia coli</i> FimH adhesin. Molecular Microbiology, 2005, 55, 441-455.	2.5	372
29	Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochemical Journal, 2005, 389, 685-694.	3.7	90
30	Mutagenesis Elucidates The Assembly Pathway and Structure of Yersinia pestis F1 Polymer. Advances in Experimental Medicine and Biology, 2004, 529, 113-116.	1.6	0
31	Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the F1 antigen Caf1M–Caf1 chaperone–subunit pre-assembly complex from <i>Yersinia pestis</i> . Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 359-362.	2.5	10
32	Structure and Biogenesis of the Capsular F1 Antigen from Yersinia pestis. Cell, 2003, 113, 587-596.	28.9	238
33	Donor strand complementation mechanism in the biogenesis of nonâ€pilus systems. Molecular Microbiology, 2002, 45, 983-995.	2.5	65
34	A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3. Cell, 2001, 107, 115-124.	28.9	186
35	Secretion of Recombinant Proteins via the Chaperone/Usher Pathway in Escherichia coli. Applied and Environmental Microbiology, 2001, 67, 1805-1814.	3.1	17
36	Novel fusion proteins in the analysis of diabetes-associated autoantibodies to GAD65 and IA-2. Journal of Immunological Methods, 2000, 246, 91-96.	1.4	7

ANTON V ZAVIALOV

#	Article	IF	CITATIONS
37	Structural and Functional Significance of the FGL Sequence of the Periplasmic Chaperone Caf1M of <i>Yersinia pestis</i> . Journal of Bacteriology, 1999, 181, 2422-2429.	2.2	30
38	Thiol/disulfide exchange between small heat shock protein 25 and glutathione. BBA - Proteins and Proteomics, 1998, 1388, 123-132.	2.1	28
39	The effect of the intersubunit disulfide bond on the structural and functional properties of the small heat shock protein Hsp25. International Journal of Biological Macromolecules, 1998, 22, 163-173.	7.5	55
40	Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone Caf1M of <i>Yersinia pestis</i> . Biochemical Journal, 1997, 324, 571-578.	3.7	44