Lijuan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702393/publications.pdf

Version: 2024-02-01

65	5,970	32	63
papers	citations	h-index	g-index
65	65	65	9160 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Ultrathin metalâ \in organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy, 2016, 1, .	39.5	1,979
2	Ultrathin Nitrogenâ€Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 16511-16515.	13.8	261
3	Interlaced NiS ₂ –MoS ₂ nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. Journal of Materials Chemistry A, 2016, 4, 13439-13443.	10.3	241
4	Co–Niâ€Based Nanotubes/Nanosheets as Efficient Water Splitting Electrocatalysts. Advanced Energy Materials, 2016, 6, 1501661.	19.5	232
5	Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2017, 7, 1701456.	19.5	203
6	Selfâ€Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity. Angewandte Chemie - International Edition, 2017, 56, 15397-15401.	13.8	185
7	Controlled Synthesis of Ordered Mesoporous Câ^'TiO ₂ Nanocomposites with Crystalline Titania Frameworks from Organicâ^'Inorganicâ^'Amphiphilic Coassembly. Chemistry of Materials, 2008, 20, 1140-1146.	6.7	173
8	Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nature Communications, 2021, 12, 1580.	12.8	162
9	Boronic Acid Functionalized Core–Satellite Composite Nanoparticles for Advanced Enrichment of Glycopeptides and Glycoproteins. Chemistry - A European Journal, 2009, 15, 10158-10166.	3.3	134
10	Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. Journal of Colloid and Interface Science, 2020, 577, 109-114.	9.4	120
11	Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chemical Engineering Journal, 2018, 338, 734-744.	12.7	115
12	NbO ₂ Electrocatalyst Toward 32% Faradaic Efficiency for N ₂ Fixation. Small Methods, 2019, 3, 1800386.	8.6	111
13	Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2-MIL-125(Ti) as a robust photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 2017, 218, 743-750.	20.2	109
14	Photoelectrochemical Conversion from Graphitic C ₃ N ₄ Quantum Dot Decorated Semiconductor Nanowires. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12772-12779.	8.0	103
15	A flexible ligand-based wavy layered metal–organic framework for lithium-ion storage. Journal of Colloid and Interface Science, 2015, 445, 320-325.	9.4	102
16	Fabrication of Highly Stable Metal Oxide Hollow Nanospheres and Their Catalytic Activity toward 4-Nitrophenol Reduction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18207-18214.	8.0	97
17	Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells. Biosensors and Bioelectronics, 2018, 122, 217-223.	10.1	91
18	2D–2D Heterostructured UNiMOF/g-C ₃ N ₄ for Enhanced Photocatalytic H ₂ Production under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2492-2499.	6.7	90

#	Article	lF	Citations
19	Ni-Al layered double hydroxide with regulated interlayer spacing as electrode for aqueous asymmetric supercapacitor. Chemical Engineering Journal, 2019, 368, 905-913.	12.7	88
20	Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochimica Acta, 2018, 263, 391-399.	5.2	72
21	Sub-5Ânm SnO ₂ chemically coupled hollow carbon spheres for efficient electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 20121-20127.	10.3	72
22	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	10.3	70
23	Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO ₂ cycloaddition. Science Advances, 2020, 6, eaaz4824.	10.3	68
24	Dual-Atomic Cu Sites for Electrocatalytic CO Reduction to C ₂₊ Products., 2021, 3, 1729-1737.		66
25	Sandwichâ€Like Reduced Graphene Oxide/Carbon Black/Amorphous Cobalt Borate Nanocomposites as Bifunctional Cathode Electrocatalyst in Rechargeable Zincâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1801495.	19.5	65
26	W18O49 nanowires grown on g-C3N4 sheets with enhanced photocatalytic hydrogen evolution activity under visible light. Journal of Molecular Catalysis A, 2016, 418-419, 95-102.	4.8	58
27	Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33049-33059.	8.0	58
28	Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation. Advanced Materials, 2016, 28, 7626-7632.	21.0	51
29	Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Advances, 2015, 5, 6886-6891.	3.6	47
30	General strategy toward hexagonal ring-like layered double hydroxides and their application for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 375, 121926.	12.7	45
31	Ru-doped, oxygen-vacancy-containing CeO ₂ nanorods toward N ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 7229-7234.	10.3	45
32	Mesoporous tin oxide for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2018, 531, 564-569.	9.4	44
33	Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells. Applied Energy, 2020, 264, 114700.	10.1	40
34	Heterogeneous Electrocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2021, 4, 1034-1044.	5.1	31
35	Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol. Journal of Colloid and Interface Science, 2020, 570, 375-381.	9.4	30
36	Electrocatalysts: Co–Niâ€Based Nanotubes/Nanosheets as Efficient Water Splitting Electrocatalysts (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	19.5	29

#	Article	IF	CITATIONS
37	Oxygen Vacancyâ€rich Anatase TiO ₂ Hollow Spheres Via Liquid Nitrogen Quenching Process for Enhanced Photocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 1057-1063.	3.7	29
38	Direct growth of mesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2876-2882.	10.3	28
39	Hybrid palladium nanoparticles and nickel single atom catalysts for efficient electrocatalytic ethanol oxidation. Journal of Materials Chemistry A, 2022, 10, 6129-6133.	10.3	28
40	Facile construction of dual functional Fe3O4@C-MoO2-Ni composites for catalysis and adsorption. Applied Surface Science, 2019, 494, 783-794.	6.1	27
41	Positive Enrichment of C-Terminal Peptides Using Oxazolone Chemistry and Biotinylation. Analytical Chemistry, 2015, 87, 9916-9922.	6.5	26
42	Modification of sludge-based biochar using air roasting-oxidation and its performance in adsorption of uranium(VI) from aqueous solutions. Journal of Colloid and Interface Science, 2022, 614, 547-555.	9.4	26
43	Highly stable and sub-3 nm Ni nanoparticles coated with carbon nanosheets as a highly active heterogeneous hydrogenation catalyst. Catalysis Communications, 2016, 79, 63-67.	3.3	24
44	Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 13634-13638.	10.3	24
45	An unusual example of morphology controlled periodic mesoporous organosilica single crystals. Journal of Materials Chemistry, 2010, 20, 6460.	6.7	22
46	Oxygen-defect-rich 3D porous cobalt-gallium layered double hydroxide for high-performance supercapacitor application. Journal of Colloid and Interface Science, 2022, 608, 1837-1845.	9.4	21
47	Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells. Science of the Total Environment, 2022, 821, 153123.	8.0	21
48	CoNiO2/TiN–TiOxNy composites for ultrahigh electrochemical energy storage and simultaneous glucose sensing. Journal of Materials Chemistry A, 2014, 2, 10904.	10.3	19
49	Carboxy group derivatization for enhanced electronâ€transfer dissociation mass spectrometric analysis of phosphopeptides. Proteomics, 2009, 9, 4093-4097.	2.2	18
50	Nonreductive biomineralization of uranium by Bacillus subtilis ATCC–6633 under aerobic conditions. Journal of Environmental Radioactivity, 2019, 208-209, 106027.	1.7	16
51	Steric effect induces CO electroreduction to CH ₄ on Cu–Au alloys. Journal of Materials Chemistry A, 2021, 9, 21779-21784.	10.3	16
52	Characterization and adsorption capacity of a novel high-performance polymeric sorbent synthesized in supercritical carbon dioxide. Journal of Supercritical Fluids, 2012, 62, 232-239.	3.2	15
53	Recent developments of nanoparticle-based enrichment methods for mass spectrometric analysis in proteomics. Science China Chemistry, 2010, 53, 695-703.	8.2	14
54	Atomic-Level Copper Sites for Selective CO ₂ Electroreduction to Hydrocarbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 13536-13544.	6.7	14

#	Article	IF	CITATIONS
55	Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery. Small, 2016, 12, 1091-1097.	10.0	13
56	Promoting N2 electroreduction to ammonia by fluorine-terminating Ti3C2Tx MXene. Nano Convergence, 2021, 8, 14.	12.1	13
57	<i>In situ</i> controlled synthesis of porous Fe–N–C materials from oily sludge by chlorinating calcination and their novel application in supercapacitors. Environmental Science: Nano, 2020, 7, 3814-3823.	4.3	12
58	Economic affordable carbonized phenolic foam anode with controlled structure for microbial fuel cells. Science of the Total Environment, 2022, 810, 151314.	8.0	12
59	Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. Journal of Colloid and Interface Science, 2021, 600, 847-853.	9.4	11
60	Facile synthesis of ultrathin \hat{I}^3 -Fe2O3 magnetic nanosheets rich in oxygen vacancies and their photocatalytic activity for water oxidation. Applied Surface Science, 2022, 578, 151999.	6.1	10
61	Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe2+(Cr3+X, Fe3+2-x)O4 and its magnetic separation. Science of the Total Environment, 2022, 813, 152637.	8.0	10
62	Synthesis of cross-linked poly(4-vinylpyridine) and its copolymer microgels using supercritical carbon dioxide: Application in the adsorption of copper(II). Journal of Supercritical Fluids, 2011, 58, 233-238.	3.2	9
63	Synthesis of amorphous hollow Ni(HCO3)2 nanostructures with excellent supercapacitor performance from nickel-containing electroplating sludge. Journal of Environmental Chemical Engineering, 2022, 10, 106906.	6.7	4
64	Co ₂ Reduction: Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction (Adv. Energy Mater. 22/2017). Advanced Energy Materials, 2017, 7, .	19.5	1
65	Energy Storage: Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation (Adv.) Tj ETQq1	1 0.7843 21.8	14 rgBT /Over