Daniela Cota

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5702360/publications.pdf Version: 2024-02-01

ΠΑΝΙΕΙΑ COTA

#	Article	IF	CITATIONS
1	Differential expression of the neuronal CB1 cannabinoid receptor in the hippocampus of male Ts65Dn Down syndrome mouse model. Molecular and Cellular Neurosciences, 2022, 119, 103705.	2.2	1
2	Dietary administration of D-chiro-inositol attenuates sex-specific metabolic imbalances in the 5xFAD mouse model of Alzheimer's disease. Biomedicine and Pharmacotherapy, 2022, 150, 112994.	5.6	2
3	Le récepteur hypothalamique TGR5 des acides biliaires. Medecine/Sciences, 2022, 38, 413-415.	0.2	1
4	Yin-Yang control of energy balance by lipids in the hypothalamus: The endocannabinoids vs bile acids case. Biochimie, 2022, , .	2.6	1
5	POMC neuronal heterogeneity in energy balance and beyond: an integrated view. Nature Metabolism, 2021, 3, 299-308.	11.9	80
6	Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats. Nature Communications, 2021, 12, 1778.	12.8	26
7	Inhibition of mTOR signaling by genetic removal of p70 S6 kinase 1 increases anxiety-like behavior in mice. Translational Psychiatry, 2021, 11, 165.	4.8	16
8	Central anorexigenic actions of bile acids are mediated by TGR5. Nature Metabolism, 2021, 3, 595-603.	11.9	64
9	Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metabolism, 2021, 33, 1483-1492.e10.	16.2	79
10	Microglial Cannabinoid Type 1 Receptor Regulates Brain Inflammation in a Sex-Specific Manner. Cannabis and Cannabinoid Research, 2021, , .	2.9	18
11	The temporal origin of dentate granule neurons dictates their role in spatial memory. Molecular Psychiatry, 2021, 26, 7130-7140.	7.9	13
12	CB1 and GLP-1 Receptors Cross Talk Provides New Therapies for Obesity. Diabetes, 2021, 70, 415-422.	0.6	19
13	Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Reports, 2021, 37, 109800.	6.4	19
14	Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet. Scientific Reports, 2021, 11, 19664.	3.3	16
15	Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cellular and Molecular Life Sciences, 2021, 78, 7469-7490.	5.4	11
16	Gut Microbiota and Mycobiota Evolution Is Linked to Memory Improvement after Bariatric Surgery in Obese Patients: A Pilot Study. Nutrients, 2021, 13, 4061.	4.1	5
17	POMC Neurons Dysfunction in Diet-induced Metabolic Disease: Hallmark or Mechanism of Disease?. Neuroscience, 2020, 447, 3-14.	2.3	14
18	Oea Signaling Pathways and the Metabolic Benefits of Vertical Sleeve Gastrectomy. Annals of Surgery, 2020, 271, 509-518.	4.2	16

Daniela Cota

#	Article	IF	CITATIONS
19	A Novel Cortical Mechanism for Top-Down Control of Water Intake. Current Biology, 2020, 30, 4789-4798.e4.	3.9	13
20	Role of Endocannabinoids in Energy-Balance Regulation in Participants in the Postobese State—a PREVIEW Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2511-e2520.	3.6	4
21	Anti-obesity therapy with peripheral CB1 blockers: from promise to safe(?) practice. International Journal of Obesity, 2020, 44, 2179-2193.	3.4	26
22	Effects of a High-Protein Diet on Cardiometabolic Health, Vascular Function, and Endocannabinoids—A PREVIEW Study. Nutrients, 2020, 12, 1512.	4.1	8
23	mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Molecular Metabolism, 2019, 28, 151-159.	6.5	16
24	Effects of a High-Protein/Moderate-Carbohydrate Diet on Appetite, Gut Peptides, and Endocannabinoids—A Preview Study. Nutrients, 2019, 11, 2269.	4.1	17
25	The gliotransmitter ACBP controls feeding and energy homeostasis via the melanocortin system. Journal of Clinical Investigation, 2019, 129, 2417-2430.	8.2	52
26	mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin. Molecular Metabolism, 2018, 12, 98-106.	6.5	19
27	mTORC1 pathway disruption abrogates the effects of the ciliary neurotrophic factor on energy balance and hypothalamic neuroinflammation. Brain, Behavior, and Immunity, 2018, 70, 325-334.	4.1	11
28	Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling. Gut, 2018, 67, 2192-2203.	12.1	17
29	NPV-BSK805, an Antineoplastic Jak2 Inhibitor Effective in Myeloproliferative Disorders, Causes Adiposity in Mice by Interfering With the Action of Leptin. Frontiers in Pharmacology, 2018, 9, 527.	3.5	1
30	MECHANISMS IN ENDOCRINOLOGY: Endocannabinoids and metabolism: past, present and future. European Journal of Endocrinology, 2017, 176, R309-R324.	3.7	101
31	Inhibiting Microglia Expansion Prevents Diet-Induced Hypothalamic and Peripheral Inflammation. Diabetes, 2017, 66, 908-919.	0.6	127
32	Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits. Neuropharmacology, 2017, 124, 38-51.	4.1	79
33	The CB1 Receptor as the Cornerstone of Exostasis. Neuron, 2017, 93, 1252-1274.	8.1	60
34	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	16.2	66
35	The brain strikes back: Hypothalamic targets for peripheral CB 1 receptor inverse agonism. Molecular Metabolism, 2017, 6, 1077-1078.	6.5	3
36	Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. Journal of Clinical Investigation, 2017, 127, 4148-4162.	8.2	128

DANIELA COTA

#	Article	IF	CITATIONS
37	The Fat Side of the Endocannabinoid System: Role of Endocannabinoids in the Adipocyte. Cannabis and Cannabinoid Research, 2016, 1, 176-185.	2.9	21
38	A cannabinoid link between mitochondria and memory. Nature, 2016, 539, 555-559.	27.8	331
39	Cannabinoid Type 1 (CB1) Receptors on Sim1-Expressing Neurons Regulate Energy Expenditure in Male Mice. Endocrinology, 2015, 156, 411-418.	2.8	40
40	Endocannabinoids and Metabolic Disorders. Handbook of Experimental Pharmacology, 2015, 231, 367-391.	1.8	19
41	The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease. Trends in Endocrinology and Metabolism, 2015, 26, 524-537.	7.1	152
42	Cannabinoid CB1 receptors and mTORC1 signalling pathway interact to modulate glucose homeostasis. DMM Disease Models and Mechanisms, 2015, 9, 51-61.	2.4	28
43	CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Molecular Metabolism, 2014, 3, 705-716.	6.5	64
44	Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Obesity, 2014, 22, 713-720.	3.0	37
45	Influence of mTOR in energy and metabolic homeostasis. Molecular and Cellular Endocrinology, 2014, 397, 67-77.	3.2	96
46	mTORC2, the "other―mTOR, is a new player in energy balance regulation. Molecular Metabolism, 2014, 3, 349-350.	6.5	5
47	Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes. Molecular Metabolism, 2013, 2, 393-404.	6.5	76
48	Leucine Supplementation Protects from Insulin Resistance by Regulating Adiposity Levels. PLoS ONE, 2013, 8, e74705.	2.5	57
49	Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB ₁ receptor blockade. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4786-4791.	7.1	115
50	Hypothalamic CB1 Cannabinoid Receptors Regulate Energy Balance in Mice. Endocrinology, 2012, 153, 4136-4143.	2.8	109
51	The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. Journal of Psychopharmacology, 2012, 26, 114-124.	4.0	111
52	Coupling nutrient sensing to metabolic homoeostasis: the role of the mammalian target of rapamycin complex 1 pathway. Proceedings of the Nutrition Society, 2012, 71, 502-510.	1.0	37
53	Obesity and the Endocannabinoid System: Circulating Endocannabinoids and Obesity. Current Obesity Reports, 2012, 1, 229-235.	8.4	17
54	Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity. PLoS ONE, 2012, 7, e42399.	2.5	109

Daniela Cota

#	Article	IF	CITATIONS
55	Bimodal control of stimulated food intake by the endocannabinoid system. Nature Neuroscience, 2010, 13, 281-283.	14.8	246
56	CB1 Signaling in Forebrain and Sympathetic Neurons Is a Key Determinant of Endocannabinoid Actions on Energy Balance. Cell Metabolism, 2010, 11, 273-285.	16.2	190
57	Complex Regulation of Mammalian Target of Rapamycin Complex 1 in the Basomedial Hypothalamus by Leptin and Nutritional Status. Endocrinology, 2009, 150, 4541-4551.	2.8	73
58	Food Intakeâ€independent Effects of CB1 Antagonism on Glucose and Lipid Metabolism. Obesity, 2009, 17, 1641-1645.	3.0	60
59	Mammalian target of rapamycin complex 1 (mTORC1) signaling in energy balance and obesity. Physiology and Behavior, 2009, 97, 520-524.	2.1	28
60	The Role of Hypothalamic Mammalian Target of Rapamycin Complex 1 Signaling in Diet-Induced Obesity. Journal of Neuroscience, 2008, 28, 7202-7208.	3.6	175
61	The Integrative Role of CNS Fuel-Sensing Mechanisms in Energy Balance and Glucose Regulation. Annual Review of Physiology, 2008, 70, 513-535.	13.1	158
62	Fatty Acid Synthase Inhibitors Modulate Energy Balance via Mammalian Target of Rapamycin Complex 1 Signaling in the Central Nervous System. Diabetes, 2008, 57, 3231-3238.	0.6	52
63	Role of the Endocannabinoid System in Energy Balance Regulation and Obesity. , 2008, 36, 135-145.		46
64	Requirement of Cannabinoid Receptor Type 1 for the Basal Modulation of Hypothalamic-Pituitary-Adrenal Axis Function. Endocrinology, 2007, 148, 1574-1581.	2.8	186
65	The Role of CNS Fuel Sensing in Energy and Glucose Regulation. Gastroenterology, 2007, 132, 2158-2168.	1.3	110
66	CB1 receptors: emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes/Metabolism Research and Reviews, 2007, 23, 507-517.	4.0	116
67	Hypothalamic mTOR Signaling Regulates Food Intake. Science, 2006, 312, 927-930.	12.6	1,111
68	Leptin in Energy Balance and Reward: Two Faces of the Same Coin?. Neuron, 2006, 51, 678-680.	8.1	51
69	Cannabinoids, opioids and eating behavior: The molecular face of hedonism?. Brain Research Reviews, 2006, 51, 85-107.	9.0	288
70	The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance. Endocrine Reviews, 2006, 27, 73-100.	20.1	751
71	The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. Journal of Clinical Investigation, 2003, 112, 423-431.	8.2	963
72	Paracrine actions of GLP1 in the gut unraveled. , 0, , .		0

Paracrine actions of GLP1 in the gut unraveled. , 0, , . 72