Yanlin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701838/publications.pdf

Version: 2024-02-01

279798 289244 1,780 49 23 40 citations h-index g-index papers 52 52 52 2460 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nature Communications, 2017, 8, 1493.	12.8	117
2	CXCL16 Recruits Bone Marrow-Derived Fibroblast Precursors in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1876-1886.	6.1	107
3	Adiponectin Promotes Monocyte-to-Fibroblast Transition in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1644-1659.	6.1	97
4	Critical Role of CXCL16 in Hypertensive Kidney Injury and Fibrosis. Hypertension, 2013, 62, 1129-1137.	2.7	91
5	JAK3/STAT6 Stimulates Bone Marrow–Derived Fibroblast Activation in Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2015, 26, 3060-3071.	6.1	89
6	Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. Journal of Leukocyte Biology, 2009, 86, 981-988.	3.3	80
7	CCR2 mediates the uptake of bone marrow-derived fibroblast precursors in angiotensin Il-induced cardiac fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H538-H547.	3. 2	78
8	ROCK1 Induces Endothelial-to-Mesenchymal Transition in Glomeruli to Aggravate Albuminuria in Diabetic Nephropathy. Scientific Reports, 2016, 6, 20304.	3.3	72
9	Genetic deficiency of adiponectin protects against acute kidney injury. Kidney International, 2013, 83, 604-614.	5. 2	67
10	The IL-4 receptor α has a critical role in bone marrow–derived fibroblast activation and renal fibrosis. Kidney International, 2017, 92, 1433-1443.	5.2	65
11	Loss of <scp>PTEN</scp> promotes podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy. Journal of Pathology, 2015, 236, 30-40.	4.5	57
12	Suppression of muscle wasting by the plantâ€derived compound ursolic acid in a model of chronic kidney disease. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 327-341.	7.3	53
13	The chemokine receptor CXCR6 contributes to recruitment of bone marrow–derived fibroblast precursors in renal fibrosis. Kidney International, 2014, 86, 327-337.	5. 2	49
14	Longâ€noncoding RNA Atrolncâ€1 promotes muscle wasting in mice with chronic kidney disease. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 962-974.	7.3	47
15	Tumor Necrosis Factor. Circulation: Heart Failure, 2015, 8, 352-361.	3.9	45
16	Effect of Interleukin 6 Deficiency on Renal Interstitial Fibrosis. PLoS ONE, 2012, 7, e52415.	2.5	45
17	CXCR6 Plays a Critical Role in Angiotensin II–Induced Renal Injury and Fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1422-1428.	2.4	44
18	CCR2 Regulates the Uptake of Bone Marrow-Derived Fibroblasts in Renal Fibrosis. PLoS ONE, 2013, 8, e77493.	2.5	41

#	Article	IF	Citations
19	Role of Bone Marrow-Derived Fibroblasts in Renal Fibrosis. Frontiers in Physiology, 2016, 7, 61.	2.8	37
20	Pharmacological Inhibition of STAT6 Ameliorates Myeloid Fibroblast Activation and Alternative Macrophage Polarization in Renal Fibrosis. Frontiers in Immunology, 2021, 12, 735014.	4.8	36
21	Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis. Laboratory Investigation, 2014, 94, 545-556.	3.7	35
22	CXCL16 Deficiency Attenuates Renal Injury and Fibrosis in Salt-Sensitive Hypertension. Scientific Reports, 2016, 6, 28715.	3. 3	35
23	AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney International, 2018, 93, 81-94.	5.2	31
24	CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget, 2016, 7, 31652-31662.	1.8	31
25	CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H815-H821.	3.2	25
26	STAT6 Deficiency Attenuates Myeloid Fibroblast Activation and Macrophage Polarization in Experimental Folic Acid Nephropathy. Cells, 2021, 10, 3057.	4.1	24
27	CKD Stimulates Muscle Protein Loss Via Rho-associated Protein Kinase 1 Activation. Journal of the American Society of Nephrology: JASN, 2016, 27, 509-519.	6.1	23
28	Pharmacological Inhibition of PTEN Aggravates Acute Kidney Injury. Scientific Reports, 2017, 7, 9503.	3.3	21
29	Myeloid PTEN deficiency aggravates renal inflammation and fibrosis in angiotensin Ilâ€induced hypertension. Journal of Cellular Physiology, 2022, 237, 983-991.	4.1	20
30	Serum integrative omics reveals the landscape of human diabetic kidney disease. Molecular Metabolism, 2021, 54, 101367.	6.5	20
31	Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Communications Biology, 2020, 3, 556.	4.4	18
32	TAK1 deficiency attenuates cisplatin-induced acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 318, F209-F215.	2.7	17
33	Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin Il–induced hypertension. Nephrology Dialysis Transplantation, 2020, 35, 1491-1500.	0.7	17
34	The nuclear phosphatase SCP4 regulates FoxOÂtranscription factors during muscle wastingÂin chronic kidney disease. Kidney International, 2017, 92, 336-348.	5.2	16
35	Global Proteome and Phosphoproteome Characterization of Sepsis-induced Kidney Injury. Molecular and Cellular Proteomics, 2020, 19, 2030-2047.	3.8	16
36	AMP-activated protein kinase contributes to cisplatin-induced renal epithelial cell apoptosis and acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F1073-F1080.	2.7	14

#	Article	IF	Citations
37	Proteins and renal fibrosis: low-protein diets induce Kruppel-like factor-15, limiting renal fibrosis. Kidney International, 2011, 79, 933-934.	5.2	13
38	Can Muscle-Kidney Crosstalk Slow Progression of CKD?. Journal of the American Society of Nephrology: JASN, 2014, 25, 2681-2683.	6.1	13
39	Recent Advances in Magnetic Resonance Imaging Assessment of Renal Fibrosis. Advances in Chronic Kidney Disease, 2017, 24, 150-153.	1.4	12
40	Disruption of CXCR6 Ameliorates Kidney Inflammation and Fibrosis in Deoxycorticosterone Acetate/Salt Hypertension. Scientific Reports, 2020, 10, 133.	3.3	12
41	TNF/Ang-II synergy is obligate for fibroinflammatory pathology, but not for changes in cardiorenal function. Physiological Reports, 2016, 4, e12765.	1.7	11
42	Targeting Bone Marrow-Derived Fibroblasts for Renal Fibrosis. Advances in Experimental Medicine and Biology, 2019, 1165, 305-322.	1.6	11
43	Non-canonical Wnt/calcium signaling is protective against podocyte injury and glomerulosclerosis. Kidney International, 2022, 102, 96-107.	5.2	7
44	MRI demonstration of gadolinium deposition in bone after monthly triple-dose gadopentetate dimeglumine and correlation with frequency of hypophosphatemia. Clinical Imaging, 2021, 70, 136-141.	1.5	6
45	Mechanisms of Adiponectin in Regulation of Proinflammatory Cytokine Production and Migration in Macrophages. Journal of Inflammation Research, 2021, Volume 14, 981-993.	3.5	6
46	The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. IScience, 2021, 24, 103112.	4.1	5
47	Phosphoinositide 3 Kinase Î ³ Plays a Critical Role in Acute Kidney Injury. Cells, 2022, 11, 772.	4.1	3
48	Pharmacological Inhibition of STAT6 Ameliorates Myeloid Fibroblast Activation and Alternative Macrophage Polarization in Renal Fibrosis. Frontiers in Immunology, 2021, 12, 735014.	4.8	1
49	Abstract 75: TNF Receptor 1 Signaling: a Mechanistic Link between Cardiac Inflammation and Fibrosis. Circulation Research, 2014, 115, .	4.5	O