Daniel Horak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701749/publications.pdf

Version: 2024-02-01

268 papers 7,314 citations

50276 46 h-index 91884 69 g-index

273 all docs

273 docs citations

times ranked

273

8267 citing authors

#	Article	IF	CITATIONS
1	Magnetic Iron Oxide Particles for Theranostics. , 2022, , 95-115.		O
2	Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nature Protocols, 2022, 17, 1028-1072.	12.0	60
3	Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells. International Journal of Nanomedicine, 2022, Volume 17, 969-981.	6.7	1
4	PMVEMA-coated upconverting nanoparticles for upconversion-linked immunoassay of cardiac troponin. Talanta, 2022, 244, 123400.	5 . 5	7
5	NaYF ₄ -based upconverting nanoparticles with optimized phosphonate coatings for chemical stability and viability of human endothelial cells. Methods and Applications in Fluorescence, 2022, 10, 014001.	2.3	1
6	Poly(4-Styrenesulfonic Acid- <i>co</i> -maleic Anhydride)-Coated NaGdF ₄ :Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells. ACS Applied Materials & Samp; Interfaces, 2022, , .	8.0	3
7	Tannic Acid Coating Augments Glioblastoma Cellular Uptake of Magnetic Nanoparticles with Antioxidant Effects. Nanomaterials, 2022, 12, 1310.	4.1	7
8	Isolation and identification in human blood serum of the proteins possessing the ability to bind with 48 kDa form of unconventional myosin 1c and their possible diagnostic and prognostic value. Biomedical Chromatography, 2021, 35, e5029.	1.7	4
9	Capture of DNAs by magnetic hypercrosslinked poly(styrene-co-divinylbenzene) microspheres. Journal of Materials Science, 2021, 56, 5817-5829.	3.7	4
10	Formation of phosphonate coatings for improved chemical stability of upconverting nanoparticles under physiological conditions. Dalton Transactions, 2021, 50, 6588-6597.	3.3	7
11	Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials, 2021, 11, 230.	4.1	16
12	Enhanced Ordering of Block Copolymer Thin Films upon Addition of Magnetic Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9195-9205.	8.0	10
13	RGDS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate)-Based Scaffolds as 3D In Vitro Leukemia Model. International Journal of Molecular Sciences, 2021, 22, 2376.	4.1	10
14	Poly(ethylene glycol)-Alendronate-Coated Magnetite Nanoparticles Do Not Alter Cardiovascular Functions and Red Blood Cells' Properties in Hypertensive Rats. Nanomaterials, 2021, 11, 1238.	4.1	6
15	PEG-Neridronate-Modified NaYF ₄ :Gd ³⁺ ,Yb ³⁺ ,Tm ³⁺ /NaGdF ₄ Core–Shell Upconverting Nanoparticles for Bimodal Magnetic Resonance/Optical Luminescence Imaging, ACS Omega, 2021, 6, 14420-14429.	3 . 5	7
16	Magnetic Superporous Poly(2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Bone Tissue Engineering. Polymers, 2021, 13, 1871.	4.5	5
17	In vitro cellular activity of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111824.	5.0	10
18	Cationic Polymer-Coated Magnetic Nanoparticles with Antibacterial Properties: Synthesis and In Vitro Characterization. Antibiotics, 2021, 10, 1077.	3.7	9

#	Article	IF	CITATIONS
19	Thiolated poly(2-hydroxyethyl methacrylate) hydrogels as a degradable biocompatible scaffold for tissue engineering. Materials Science and Engineering C, 2021, 131, 112500.	7.3	8
20	Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er@NaYF4:Nd coreâ€"shell nanoparticles for fluorescent labeling of carcinoma cells. Scientific Reports, 2021, 11, 21373.	3.3	4
21	Multimodal fluorescently labeled polymer-coated GdF ₃ nanoparticles inhibit degranulation in mast cells. Nanoscale, 2021, 13, 19023-19037.	5.6	4
22	The negative effect of magnetic nanoparticles with ascorbic acid on peritoneal macrophages. Neurochemical Research, 2020, 45, 159-170.	3.3	6
23	Poly[N â€(2â€hydroxypropyl)methacrylamide]â€Modified Magnetic γâ€F 2 O 3 Nanoparticles Conjugated with Doxorubicin for Glioblastoma Treatment. ChemMedChem, 2020, 15, 96-104.	3.2	12
24	Transient coating of \hat{I}^3 -Fe ₂ O ₃ nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. Beilstein Journal of Nanotechnology, 2020, 11, 1381-1393.	2.8	3
25	Single-Nanocrystal Studies on the Homogeneity of the Optical Properties of NaYF ₄ :Yb ³⁺ ,Er ³⁺ . ACS Omega, 2020, 5, 26537-26544.	3.5	6
26	Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Scientific Reports, 2020, 10, 20016.	3.3	12
27	Cerium Oxide-Decorated Î ³ -Fe2O3 Nanoparticles: Design, Synthesis and in vivo Effects on Parameters of Oxidative Stress. Frontiers in Chemistry, 2020, 8, 682.	3.6	19
28	Intravenously administered <scp>d</scp> -mannitol-coated maghemite nanoparticles cause elemental anomalies in selected rat organs. Metallomics, 2020, 12, 1811-1821.	2.4	2
29	Single Nanocrystals Studies of Upconverting Nanoparticles. ECS Transactions, 2020, 97, 29-39.	0.5	О
30	Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules, 2020, 21, 4502-4513.	5.4	28
31	Doxorubicinâ€Conjugated Iron Oxide Nanoparticles: Surface Engineering and Biomedical Investigation. ChemPlusChem, 2020, 85, 1156-1163.	2.8	12
32	FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118355.	3.9	18
33	Monodisperse Core-Shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 Nanoparticles Excitable at 808 and 980 nm: Design, Surface Engineering, and Application in Life Sciences. Frontiers in Chemistry, 2020, 8, 497.	3.6	18
34	Chitin Nanofiber Paper toward Optical (Bio)sensing Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15538-15552.	8.0	64
35	Magnetic Temperature-Sensitive Solid-Lipid Particles for Targeting and Killing Tumor Cells. Frontiers in Chemistry, 2020, 8, 205.	3.6	12
36	Magnetic Nano- and Microparticles in Life Sciences and Medical Imaging. Nanomedicine and Nanotoxicology, 2020, , 161-221.	0.2	1

#	Article	IF	CITATIONS
37	PHOTON-UPCONVERSION NANOPARTICLES FOR SINGLE-MOLECULE IMMUNOSENSING OF CANCER BIOMARKERS AND BACTERIA. , 2020, , .		0
38	Antibacterial Silver-Conjugated Magnetic Nanoparticles: Design, Synthesis and Bactericidal Effect. Pharmaceutical Research, 2019, 36, 147.	3.5	24
39	Multimodal PSSMAâ€Functionalized GdF 3  : Eu 3+ (Tb 3+) Nanoparticles for Luminescence Imaging, Ml and Xâ€Ray Computed Tomography. ChemPlusChem, 2019, 84, 1135-1139.	RI _{2.8}	6
40	D-mannose-Coating of Maghemite Nanoparticles Improved Labeling of Neural Stem Cells and Allowed Their Visualization by <i>ex vivo</i> MRI after Transplantation in the Mouse Brain. Cell Transplantation, 2019, 28, 553-567.	2.5	17
41	The purification and identification of human blood serum proteins with affinity to the antitumor active RL2 lactaptin using magnetic microparticles. Biomedical Chromatography, 2019, 33, e4647.	1.7	3
42	Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistribution in a mouse preclinical model. Scientific Reports, 2019, 9, 10765.	3.3	69
43	Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay. Analytical Chemistry, 2019, 91, 9435-9441.	6.5	62
44	Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology, 2019, 13, 510-526.	3.0	17
45	Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1073-1088.	2.8	23
46	Enhanced solid phase extraction of DNA using hydrophilic monodisperse poly(methacrylic) Tj ETQq0 0 0 rgBT /Ov	erlock 10 2.3	Tf 50 382 To
47	Peroxidase-like activity of magnetic poly(glycidyl methacrylate-co-ethylene dimethacrylate) particles. Scientific Reports, 2019, 9, 1543.	3.3	5
48	Antifouling Microparticles To Scavenge Lipopolysaccharide from Human Blood Plasma. Biomacromolecules, 2019, 20, 959-968.	5.4	13
49	Optimalization of deoxyribonucleic acid extraction using various types of magnetic particles. Chemical Papers, 2019, 73, 1247-1255.	2.2	2
50	Antioxidant polymer-modified maghemite nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 473, 517-526.	2.3	4
51	Biocompatibility assessment of up-and down-converting nanoparticles: implications of interferences with <i>in vitro</i> assays. Methods and Applications in Fluorescence, 2019, 7, 014001.	2.3	16
52	Combined antitumor effect of surface-modified superparamagnetic maghemite nanoparticles and a vitamin E derivative on experimental Walker-256 mammary gland carcinosarcoma. Journal of Magnetism and Magnetic Materials, 2019, 471, 381-387.	2.3	6
53	Effect of Fe ₃ O ₄ @ SiO ₂ Nanoparticle Diameter on Glutamate Transport in Brain Nerve Terminals. Nanoscience and Nanotechnology Letters, 2019, 11, 61-69.	0.4	4
54	Novel Preparation of Monodisperse Poly(styrene-co-divinylbenzene) Microspheres by Controlled Dispersion Polymerization. Polymer Science - Series B, 2018, 60, 9-15.	0.8	4

#	Article	IF	CITATIONS
55	Monodisperse magnetic poly(glycidyl methacrylate) microspheres for isolation of autoantibodies with affinity for the 46ÅkDa form of unconventional Myo1C present in autoimmune patients. Mikrochimica Acta, 2018, 185, 262.	5.0	18
56	Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin. Journal of Food Processing and Preservation, 2018, 42, e13384.	2.0	8
57	Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids and Surfaces B: Biointerfaces, 2018, 161, 35-41.	5.0	28
58	Percolation limited emission intensity from upconverting NaYF ₄ :Yb ³⁺ ,Er ³⁺ nanocrystals – a single nanocrystal optical study. Nanoscale, 2018, 10, 21186-21196.	5.6	16
59	Cytotoxicity of doxorubicin-conjugated poly[$<$ i>N $<$ i>-(2-hydroxypropyl)methacrylamide]-modified \hat{I}^3 -Fe $<$ sub>2 $<$ sub>O $<$ sub>3 $<$ sub> nanoparticles towards human tumor cells. Beilstein Journal of Nanotechnology, 2018, 9, 2533-2545.	2.8	14
60	Silver nanoparticles in the thermal silver plating of aluminium busbar joints. Nanotechnology Reviews, 2018, 7, 365-372.	5.8	10
61	Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection. Journal of Materials Science: Materials in Medicine, 2018, 29, 89.	3.6	23
62	Evaluation of Colorimetric BCA-Based Quantification of Hydrazide Groups on Magnetic Particles. Journal of Spectroscopy, 2018, 2018, 1-5.	1.3	1
63	Interaction of poly-L-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells. International Journal of Nanomedicine, 2018, Volume 13, 1693-1706.	6.7	28
64	Modified Methacrylate Hydrogels Improve Tissue Repair after Spinal Cord Injury. International Journal of Molecular Sciences, 2018, 19, 2481.	4.1	28
65	Antifouling Peptide Dendrimer Surface of Monodisperse Magnetic Poly(glycidyl methacrylate) Microspheres. Macromolecules, 2017, 50, 1302-1311.	4.8	24
66	Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe ₃ O ₄ &SiO ₂ core–shell nanoparticles. RSC Advances, 2017, 7, 8786-8797.	3.6	44
67	Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Bioscience Reports, 2017, 37, .	2.4	10
68	Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10544-10553.	8.0	47
69	A simple neridronate-based surface coating strategy for upconversion nanoparticles: highly colloidally stable ¹²⁵ I-radiolabeled NaYF ₄ :Yb ³⁺ /Er ³⁺ @PEG nanoparticles for multimodal <i>in vivo</i> Vivos	5.6	63
70	Biodistribution of upconversion/magnetic silica-coated NaGdF ₄ :Yb ³⁺ /Er ³⁺ nanoparticles in mouse models. RSC Advances, 2017, 7, 45997-46006.	3.6	21
71	PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl) Tj ETQq $1\ 1\ 0.78$	34314 rgB 6.1	T Overloc
72	Phthalocyanineâ€Conjugated Upconversion NaYF ₄ :Yb ³⁺ /Er ³⁺ @SiO ₂ Nanospheres for NIRâ€Triggered Photodynamic Therapy in a Tumor Mouse Model. ChemMedChem, 2017, 12, 2066-2073.	3.2	21

#	Article	IF	Citations
73	Heat generation of surface-modified magnetic $\langle i \rangle \hat{j}^3 \langle i \rangle$ -Fe $\langle sub \rangle 2 \langle sub \rangle 3 \langle sub \rangle$ nanoparticles in applied alternating magnetic field. Journal Physics D: Applied Physics, 2017, 50, 345002.	2.8	14
74	Effect of O-methyl-Î ² -cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals. Colloids and Surfaces B: Biointerfaces, 2017, 149, 64-71.	5.0	16
7 5	Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an & amp; alpha; -tocopherol derivative in a rat model of mammary gland carcinosarcoma. International Journal of Nanomedicine, 2017, Volume 12, 4257-4268.	6.7	16
76	Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein Journal of Nanotechnology, 2016, 7, 246-262.	2.8	69
77	Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2016, 11, 1701.	6.7	57
78	Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 926-936.	2.8	29
79	Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croatian Medical Journal, 2016, 57, 165-178.	0.7	16
80	The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors. International Journal of Nanomedicine, 2016, Volume 11, 6267-6281.	6.7	16
81	Raft polymerization of <i>N,N </i> dimethylacrylamide from magnetic poly(2-hydroxyethyl) Tj ETQq1 1 0.784314 Part A, 2016, 54, 1036-1043.	rgBT /Over 2.3	lock 10 Tf 5
82	Latent heat storage by silica-coated polymer beads containing organic phase change materials. Solar Energy, 2016, 132, 405-414.	6.1	43
83	NaYF4:Yb3+/Er3+ Upconversion Nanoparticles for Infrared Photodynamic Therapy of Tumors. Biophysical Journal, 2016, 110, 652a.	0.5	0
84	Superparamagnetic Fe3O4 Nanoparticles: Synthesis by Thermal Decomposition of Iron(III) Glucuronate and Application in Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2016, 8, 7238-7247.	8.0	114
85	Silica-coated poly(glycidyl methacrylate-ethylene dimethacrylate) beads containing organic phase change materials. Thermochimica Acta, 2016, 641, 24-28.	2.7	11
86	RGDS- and SIKVAVS-Modified Superporous Poly(2-hydroxyethyl methacrylate) Scaffolds for Tissue Engineering Applications. Macromolecular Bioscience, 2016, 16, 1621-1631.	4.1	25
87	RGDS- and TAT-Conjugated Upconversion of NaYF ₄ :Yb ³⁺ /Er ³⁺ &SiO ₂ Nanoparticles: In Vitro Human Epithelioid Cervix Carcinoma Cellular Uptake, Imaging, and Targeting. ACS Applied Materials &: Interfaces. 2016. 8. 20422-20431.	8.0	36
88	Polyaniline–maghemite based dispersion: Electrical, magnetic properties and their cytotoxicity. Synthetic Metals, 2016, 214, 23-29.	3.9	18
89	Magnetoconductive maghemite core/polyaniline shell nanoparticles: Physico-chemical and biological assessment. Colloids and Surfaces B: Biointerfaces, 2016, 141, 382-389.	5.0	15
90	Streptavidin-modified monodispersed magnetic poly(2-hydroxyethyl methacrylate) microspheres as solid support in DNA-based molecular protocols. Materials Science and Engineering C, 2016, 61, 362-367.	7.3	4

#	Article	IF	CITATIONS
91	Size-dependent magnetic properties of iron oxide nanoparticles. Journal of Physics and Chemistry of Solids, 2016, 88, 24-30.	4.0	93
92	Real-Time Polymerase Chain Reaction as a Tool for Evaluation of Magnetic Poly(Glycidyl) Tj ETQq0 0 0 rgBT /Ove 639-646.	erlock 10 T 1.9	f 50 707 Td (r 5
93	Carbohydrate-Modified Magnetic Nanoparticles for Radical Scavenging. Physiological Research, 2016, 65, S243-S251.	0.9	3
94	Use of specific polysaccharideâ€immobilized monodisperse poly(glycidyl methacrylate) core–silica shell microspheres for affinity purification of lectins. Biomedical Chromatography, 2015, 29, 783-787.	1.7	5
95	The Evaluation of Magnetic Polymethacrylate-based Microspheres Used for Solid Phase DNA Micro-Extraction. Chromatography (Basel), 2015, 2, 156-166.	1.2	5
96	Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties. Beilstein Journal of Nanotechnology, 2015, 6, 2290-2299.	2.8	11
97	Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Analytical Biochemistry, 2015, 484, 4-8.	2.4	44
98	Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Ov 68, 687-696.	verlock 10 5.4	Tf 50 467 Td 11
99	Calf thymus histone-conjugated magnetic poly(2-oxoethyl methacrylate) microspheres for affinity isolation of anti-histone IgGs from the blood serum of patients with systemic lupus erythematosus. RSC Advances, 2015, 5, 63050-63055.	3.6	6
100	Nanopaper as an Optical Sensing Platform. ACS Nano, 2015, 9, 7296-7305.	14.6	204
101	RAFT of sulfobetaine for modifying poly(glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption. Journal of Polymer Science Part A, 2015, 53, 2273-2284.	2.3	6
102	Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties. Nanoscale, 2015, 7, 18096-18104.	5.6	34
103	Thionine-Modified Poly(glycidyl methacrylate) Nanospheres as Labels of Antibodies for Biosensing Applications. ACS Applied Materials & Interfaces, 2015, 7, 24926-24931.	8.0	11
104	Does surface coating of metallic nanoparticles modulate their interference with in vitro assays?. RSC Advances, 2015, 5, 70787-70807.	3.6	54
105	<i>In vivo</i> monitoring of rat macrophages labeled with poly(<scp>l</scp> â€lysine)â€iron oxide nanoparticles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1141-1148.	3.4	7
106	SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1298-1309.	2.7	66
107	Solid-phase DNA isolation from food matrices using hydrophilic magnetic microspheres. Food and Bioproducts Processing, 2015, 94, 375-381.	3.6	14
108	Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity. Journal of Magnetism and Magnetic Materials, 2015, 380, 125-131.	2.3	11

#	Article	IF	CITATIONS
109	Alzheimer′s disease biomarkers detection in human samples by efficient capturing through porous magnetic microspheres and labelling with electrocatalytic gold nanoparticles. Biosensors and Bioelectronics, 2015, 67, 162-169.	10.1	70
110	Preparation of Monodisperse Porous Silica Particles Using Poly(Glycidyl Methacrylate) Microspheres as a Template. Physiological Research, 2015, 64, S11-S17.	0.9	7
111	Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells. Beilstein Journal of Nanotechnology, 2014, 5, 1732-1737.	2.8	6
112	Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated \hat{I}^3 -Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. Beilstein Journal of Nanotechnology, 2014, 5, 778-788.	2.8	15
113	Poly(glycidyl methacrylate)/silver nanocomposite microspheres as a radioiodine scavenger: Electrophoretic characterisation of carboxyl- and amine-modified particles. Journal of Colloid and Interface Science, 2014, 421, 146-153.	9.4	13
114	Monodisperse macroporous poly(glycidyl methacrylate) microspheres coated with silica: Design, preparation and characterization. Reactive and Functional Polymers, 2014, 77, 11-17.	4.1	25
115	Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size. Journal of Microencapsulation, 2014, 31, 147-155.	2.8	21
116	Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part II. Effect of process variables on protein model drug encapsulation efficiency. Journal of Microencapsulation, 2014, 31, 156-165.	2.8	20
117	The use of new surfaceâ€modified poly(2â€hydroxyethyl methacrylate) hydrogels in tissue engineering: Treatment of the surface with fibronectin subunits versus Acâ€CGGASIKVAVSâ€OH, cysteine, and 2â€mercaptoethanol modification. Journal of Biomedical Materials Research - Part A, 2014, 102, 2315-2323.	4.0	13
118	(Invited) Lanthanides Fluorides Doped Nanocrystals for Biomedical Applications. ECS Transactions, 2014, 61, 115-125.	0.5	8
119	Novel fluorescent poly(glycidyl methacrylate) – Silica microspheres. European Polymer Journal, 2014, 56, 92-104.	5.4	24
120	Application of an improved magnetic immunosorbent in an Ephesia chip designed for circulating tumor cell capture. Electrophoresis, 2014, 35, 323-329.	2.4	19
121	Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups. Materials Science and Engineering C, 2014, 34, 193-200.	7. 3	18
122	Monodisperse Carboxyl-Functionalized Poly(Ethylene Glycol)-Coated Magnetic Poly(Glycidyl) Tj ETQq0 0 0 rgBT / Bioscience, 2014, 14, 1590-1599.	Overlock : 4.1	10 Tf 50 227 1 16
123	Magnetic poly(glycidyl methacrylate) microspheres for protein capture. New Biotechnology, 2014, 31, 482-491.	4.4	27
124	Monodisperse superparamagnetic nanoparticles by thermolysis of Fe(III) oleate and mandelate complexes. Colloid and Polymer Science, 2014, 292, 2097-2110.	2.1	15
125	PEGylation of magnetic poly(glycidyl methacrylate) microparticles for microfluidic bioassays. Materials Science and Engineering C, 2014, 40, 308-315.	7.3	15
126	Pore Structure of Poly(2-Hydroxyethyl Methacrylate) Scaffolds. , 2014, , 79-99.		0

#	Article	IF	Citations
127	Albuminâ€coated monodisperse magnetic poly(glycidyl methacrylate) microspheres with immobilized antibodies: Application to the capture of epithelial cancer cells. Journal of Biomedical Materials Research - Part A, 2013, 101A, 23-32.	4.0	43
128	PEGâ€Modified Macroporous Poly(Glycidyl Methacrylate) and Poly(2â€Hydroxyethyl Methacrylate) Microspheres to Reduce Nonâ€Specific Protein Adsorption. Macromolecular Bioscience, 2013, 13, 503-511.	4.1	19
129	Magnetic hollow poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide-co-glycidyl acrylate) particles prepared by inverse emulsion polymerization. Colloid and Polymer Science, 2013, 291, 205-213.	2.1	16
130	A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection. Journal of Biotechnology, 2013, 167, 235-240.	3.8	10
131	Fabrication and characterization of tosylâ€activated magnetic and nonmagnetic monodisperse microspheres for use in microfluicâ€based ferritin immunoassay. Biotechnology Progress, 2013, 29, 532-542.	2.6	10
132	The Use of Hydrophilic Poly(<i>N</i> , <i>N</i> -dimethylacrylamide) for Promoting Engulfment of Magnetic Î ³ -Fe ₂ O ₃ Nanoparticles by Mammalian Cells. Journal of Biomedical Nanotechnology, 2013, 9, 479-491.	1.1	19
133	Encapsulation of human serum albumin in submicrometer magnetic poly(lactide-co-glycolide) particles as a model system for targeted drug delivery. E-Polymers, 2013, 13, .	3.0	4
134	Poly(glycidyl methacrylate) Microspheres: Preparation by Poly(acrylic acid)-Stabilized Dispersion Polymerization and Effect of Some Reaction Parameters. Journal of Colloid Science and Biotechnology, 2013, 2, 218-225.	0.2	1
135	Silica-Coated \hat{I}^3 -Fe₂O₃ Nanoparticles: Preparation and Engulfment by Mammalian Macrophages. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 182-192.	0.3	12
136	Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicology Letters, 2012, 210, 53-63.	0.8	63
137	Use of magnetic hydrazide-modified polymer microspheres for enrichment of Francisella tularensis glycoproteins. Soft Matter, 2012, 8, 2775.	2.7	22
138	Magnetic Hydrophilic Poly(2-Hydroxyethyl Methacrylate-co-Glycidyl Methacrylate) Microspheres for DNA Isolation from Faeces. Molecular Crystals and Liquid Crystals, 2012, 555, 263-270.	0.9	4
139	Overexpression of (His) 6 -tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography. Protein Expression and Purification, 2012, 81, 63-68.	1.3	22
140	Magnetic Bead Cellulose as a Suitable Support for Immobilization of \hat{l}_{\pm} -Chymotrypsin. Applied Biochemistry and Biotechnology, 2012, 168, 295-305.	2.9	31
141	The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells. International Journal of Nanomedicine, 2012, 7, 1461.	6.7	4
142	New Monodisperse Magnetic Polymer Microspheres Biofunctionalized for Enzyme Catalysis and Bioaffinity Separations. Macromolecular Bioscience, 2012, 12, 647-655.	4.1	35
143	Immunomagnetic sulfonated hypercrosslinked polystyrene microspheres for electrochemical detection of proteins. Journal of Materials Chemistry, 2011, 21, 14783.	6.7	19
144	Hypercrosslinked polystyrene microspheres by suspension and dispersion polymerization. E-Polymers, $2011, 11, \ldots$	3.0	5

#	Article	IF	CITATIONS
145	The Use of Oligoperoxide-Coated Magnetic Nanoparticles to Label Stem Cells. Journal of Biomedical Nanotechnology, 2011, 7, 384-394.	1.1	15
146	Fluorescent magnetic nanoparticles for biomedical applications. Journal of Materials Chemistry, 2011, 21, 7630.	6.7	99
147	Magnetic poly(<i>N</i> ê€propargylacrylamide) microspheres: Preparation by precipitation polymerization and use in model click reactions. Journal of Polymer Science Part A, 2011, 49, 4820-4829.	2.3	24
148	Highly superporous cholesterolâ€modified poly(2â€hydroxyethyl methacrylate) scaffolds for spinal cord injury repair. Journal of Biomedical Materials Research - Part A, 2011, 99A, 618-629.	4.0	36
149	Pentapeptideâ€modified poly(<i>N</i> , <i>N</i> â€diethylacrylamide) hydrogel scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 98B, 54-67.	3.4	10
150	Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of bacterial DNA. European Polymer Journal, 2011, 47, 1090-1096.	5.4	36
151	The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials, 2010, 31, 5966-5975.	11.4	88
152	Monodisperse magnetic composite poly(glycidyl methacrylate)/La0.75Sr0.25MnO3 microspheres by the dispersion polymerization. Polymer, 2010, 51, 3116-3122.	3.8	38
153	Iminodiacetic acid-modified magnetic poly(2-hydroxyethyl methacrylate)-based microspheres for phosphopeptide enrichment. Journal of Chromatography A, 2010, 1217, 8032-8040.	3.7	24
154	Oligoperoxide Based Physically Detectable Nanocomposites for Cell Targeting, Visualization and Treatment. , 2010, , .		5
155	Hydrophilic magnetic nonporous microspheres for bacterial DNA isolation. New Biotechnology, 2009, 25, S186.	4.4	0
156	Magnetic poly(glycidyl methacrylate) particles prepared in the presence of surfaceâ€modified γâ€Fe ₂ O ₃ . Journal of Polymer Science Part A, 2009, 47, 4982-4994.	2.3	11
157	Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles. European Polymer Journal, 2009, 45, 1009-1016.	5.4	29
158	Extraction of PCR-ready DNA from Staphylococcus aureus bacteriophages using carboxyl functionalized magnetic nonporous microspheres. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 599-602.	2.3	13
159	Laccase immobilized on magnetic carriers for biotechnology applications. Journal of Magnetism and Magnetic Materials, 2009, 321, 1335-1340.	2.3	37
160	Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. Journal of Magnetism and Magnetic Materials, 2009, 321, 1539-1547.	2.3	53
161	Separation of PCR-ready DNA from dairy products using magnetic hydrophilic microspheres and poly(ethylene glycol)–NaCl water solutions. Journal of Magnetism and Magnetic Materials, 2009, 321, 1667-1670.	2.3	11
162	Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials, 2009, 30, 4601-4609.	11.4	68

#	Article	IF	Citations
163	Functionalised magnetic microspheres with hydrophilic properties for molecular diagnostic applications. Food Research International, 2009, 42, 493-498.	6.2	19
164	Poly(<i>N</i> , <i>N</i> -dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2009, 20, 283-294.	3.6	80
165	Polarity and Temperatureâ€Dependent Properties of Poly(<i>N</i> â€isopropylacrylamide) and Poly(<i>N,N</i> â€diethylacrylâ€amide) Hydrogels Studied by Liquid Chromatography. Macromolecular Symposia, 2009, 281, 142-149.	0.7	3
166	Poly(2-hydroxyethyl methacrylate) emboli with increased haemostatic effect for correction of haemorrhage of complex origin in endovascular surgery of children. Journal of Materials Science: Materials in Medicine, 2008, 19, 1265-1274.	3.6	4
167	Properties of magnetic poly(glycidyl methacrylate) and poly(N-isopropylacrylamide) microspheres. Journal of Materials Science, 2008, 43, 5845-5850.	3.7	11
168	Poly(<i>N</i> , <i>N</i> êdiethylacrylamide) microspheres by dispersion polymerization. Journal of Polymer Science Part A, 2008, 46, 6263-6271.	2.3	16
169	Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: Preparation and characterization. Polymer, 2008, 49, 2046-2054.	3.8	64
170	Poly(<scp>l</scp> -lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2008, 19, 740-750.	3.6	277
171	d-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2007, 18, 635-644.	3.6	125
172	Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science, 2007, 30, 1751-1772.	2.5	327
173	Dextran-modified iron oxide nanoparticles. Particuology: Science and Technology of Particles, 2007, 5, 162-168.	0.4	49
174	Electrorheology of silicone oil suspensions of urea-modified poly[(glycidyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Applications, 2007, 385, 1-8.	307 Td (m 2.6	nethacrylate)- 7
175	Carboxyl-functionalized magnetic microparticle carrier for isolation and identification of DNA in dairy products. Journal of Magnetism and Magnetic Materials, 2007, 311, 249-254.	2.3	36
176	Magnetic poly(<i>N</i> à€isopropylacrylamide) microspheres by dispersion and inverse emulsion polymerization. Journal of Polymer Science Part A, 2007, 45, 5884-5898.	2.3	30
177	Poly(N,N-dimethylacrylamide)-Based Microspheres Prepared by Heterogeneous Polymerizations. Macromolecular Reaction Engineering, 2007, 1, 86-94.	1.5	6
178	Synthesis and characterization of magnetic poly(glycidyl methacrylate) microspheres. Journal of Magnetism and Magnetic Materials, 2007, 311, 500-506.	2.3	28
179	Effects of the reaction parameters on the properties of thermosensitive poly(N-isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization. Journal of Polymer Science Part A, 2006, 44, 968-982.	2.3	69
180	Isolation of polymerase chain reaction-ready bacterial DNA from Lake Baikal sediments by carboxyl-functionalised magnetic polymer microspheres. Journal of Chromatography A, 2006, 1130, 115-121.	3.7	16

#	Article	IF	CITATIONS
181	Isolation of microbial DNA by newly designed magnetic particles. Colloids and Surfaces B: Biointerfaces, 2006, 52, 143-148.	5.0	37
182	Magnetic poly(glycidyl methacrylate) microspheres containing maghemite prepared by emulsion polymerization. Journal of Magnetism and Magnetic Materials, 2006, 306, 241-247.	2.3	59
183	Poly(2-hydroxyethyl methacrylate) microspheres/liquid poly(dimethylsiloxane) composition for correction of small defects in face: Histological evaluation in animal experiment. Journal of Materials Science: Materials in Medicine, 2006, 17, 123-129.	3.6	3
184	Superparamagnetic properties of \hat{I}^3 -Fe2O3 particles: Mössbauer spectroscopy and d.c. magnetic measurements. European Physical Journal D, 2006, 56, E83-E91.	0.4	11
185	Preparation of magnetic poly(glycidyl methacrylate) microspheres by emulsion polymerization in the presence of sterically stabilized iron oxide nanoparticles. Journal of Applied Polymer Science, 2006, 102, 4348-4357.	2.6	24
186	Functionalized magnetic micro- and nanoparticles: Optimization and application to \hat{l} /4-chip tryptic digestion. Electrophoresis, 2006, 27, 1811-1824.	2.4	67
187	Functional polymer hydrogels for embryonic stem cell support. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 76B, 315-325.	3.4	33
188	Magnetic IDA-modified hydrophilic methacrylate-based polymer microspheres for IMAC protein separation. Journal of Separation Science, 2006, 29, 2541-2549.	2.5	22
189	Magnetic poly(glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food. E-Polymers, 2005, 5, .	3.0	4
190	Characterization of pore structure of PHEMA-based slabs. Reactive and Functional Polymers, 2005, 62, 1-9.	4.1	29
191	Magnetic microparticulate carriers with immobilized selective ligands in DNA diagnostics. Polymer, 2005, 46, 1245-1255.	3.8	46
192	Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. Journal of Chromatography A, 2005, 1064, 247-253.	3.7	85
193	Ferrite supports for isolation of DNA from complex samples and polymerase chain reaction amplification. Journal of Chromatography A, 2005, 1080, 93-98.	3.7	27
194	Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins. Journal of Magnetism and Magnetic Materials, 2005, 293, 349-357.	2.3	25
195	Methacrylate-based chromatographic media. Journal of Separation Science, 2005, 28, 1855-1875.	2.5	91
196	Magnetic poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization in the presence of electrostatically stabilized ferrofluids. Journal of Polymer Science Part A, 2004, 42, 5827-5837.	2.3	71
197	Magnetic Characteristics of Ferrimagnetic Microspheres Prepared by Dispersion Polymerization. Macromolecular Materials and Engineering, 2004, 289, 341-348.	3.6	48
198	Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2004, 800, 27-32.	2.3	41

#	Article	lF	CITATIONS
199	Poly(2-hydroxyethyl methacrylate)-based slabs as a mouse embryonic stem cell support. Biomaterials, 2004, 25, 5249-5260.	11.4	50
200	Poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) as a mouse embryonic stem cells support. Journal of Applied Polymer Science, 2003, 87, 425-432.	2.6	14
201	Immunomagnetic separation and detection of Salmonella cells using newly designed carriers. Journal of Chromatography A, 2003, 1009, 215-221.	3.7	52
202	Effect of the reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl and glycidyl methacrylate in the presence of a ferrofluid. Journal of Polymer Science Part A, 2003, 41, 1848-1863.	2.3	88
203	Enzymes immobilized on magnetic carriers: efficient and selective system for protein modification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 770, 177-181.	2.3	67
204	Characterization of deoxyribonuclease I immobilized on magnetic hydrophilic polymer particles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 774, 25-31.	2.3	23
205	Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 770, 25-34.	2.3	61
206	Poly(2-hydroxyethyl methacrylate-co-N,O-dimethacryloylhydroxylamine) particles by dispersion polymerization. Journal of Polymer Science Part A, 2002, 40, 1625-1632.	2.3	21
207	Poly(HEMA)-based embolic material in endovascular surgery of liver. Polimery W Medycynie, 2002, 32, 48-62.	1.7	1
208	Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. Journal of Polymer Science Part A, 2001, 39, 3707-3715.	2.3	93
209	A novel highly copper(II)-selective chelating ion exchanger based on poly(glycidyl) Tj ETQq1 1 0.784314 rgBT /Ove Applied Polymer Science, 2001, 80, 913-916.	rlock 10 T 2.6	f 50 347 To
210	Properties of RNase A Immobilized on Magnetic Poly(2-hydroxyethyl methacrylate) Microspheres. Biotechnology Progress, 2001, 17, 447-452.	2.6	57
211	Targeted chemoembolization of tumors with poly(2-hydroxyethyl methacrylate) particles., 2000, 51, 184-190.		7
212	Effect of reaction parameters on the dispersion polymerization of 1-vinyl-2-pyrrolidone. Journal of Polymer Science Part A, 2000, 38, 653-663.	2.3	56
213	Magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization. Journal of Polymer Science Part A, 2000, 38, 1161-1171.	2.3	41
214	Reactive poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization. Journal of Polymer Science Part A, 2000, 38, 3855-3863.	2.3	91
215	Macroporous poly(vinylpyrrolidone–co–ethylene dimethacrylate) beads by suspension polymerization. Reactive and Functional Polymers, 2000, 45, 189-195.	4.1	18
216	Reactive poly(glycidyl methacrylate) microspheres prepared by dispersion polymerization. Journal of Polymer Science Part A, 2000, 38, 3855-3863.	2.3	3

#	Article	IF	Citations
217	Artificial emboli based on poly(2-hydroxyethyl methacrylate) particles in animal experiments. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 455-467.	3.5	1
218	Hydrazide-Functionalized Poly(2-hydroxyethyl methacrylate) Microspheres for Immobilization of Horseradish Peroxidase. Biotechnology Progress, 1999, 15, 208-215.	2.6	58
219	Oriented immobilization of chymotrypsin by use of suitable antibodies coupled to a nonporous solid support. Journal of Chromatography A, 1999, 852, 141-149.	3.7	26
220	Effect of reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl methacrylate. Journal of Polymer Science Part A, 1999, 37, 3785-3792.	2.3	69
221	Radiopaque poly(2-hydroxyethyl methacrylate) particles containing silver iodide complexes tested on cell culture. Biomaterials, 1998, 19, 1303-1307.	11.4	15
222	A novel hydrophilic crosslinker in preparation of hydrophilic sorbents. Reactive and Functional Polymers, 1997, 32, 277-280.	4.1	8
223	Hydrogels in endovascular embolization. Biomaterials, 1997, 18, 1355-1359.	11.4	41
224	New radiopaque polyHEMA-based hydrogel particles. , 1997, 34, 183-188.		39
225	New radiopaque polyHEMAâ€based hydrogel particles. Journal of Biomedical Materials Research Part B, 1997, 34, 183-188.	3.1	1
226	New radiopaque polyHEMA-based hydrogel particles. Journal of Biomedical Materials Research Part B, 1997, 34, 183-8.	3.1	5
227	Packings for Size Exclusion Chromatography: Preparation and Some Properties. ACS Symposium Series, 1996, , 190-210.	0.5	5
228	Uniform polymer beads of micrometer size. Acta Polymerica, 1996, 47, 20-28.	0.9	46
229	Poly(2-hydroxyethyl methacrylate) particles for management of hemorrhage of complicated origin: Treatment of hemobilia., 1996, 33, 193-197.		16
230	Effect of inert components on the porous structure of 2-hydroxyethyl methacrylate-ethylene dimethacrylate copolymers. Polymer, 1996, 37, 4243-4249.	3.8	32
231	Preparation and control of surface properties of monodisperse micrometer size beads by dispersion copolymerization of styrene and butyl methacrylate in polar media. Journal of Polymer Science Part A, 1995, 33, 2329-2338.	2.3	24
232	Preparation of colored poly(styrene-co-butyl methacrylate) micrometer size beads with narrow size distribution by dispersion polymerization in presence of dyes. Journal of Polymer Science Part A, 1995, 33, 2961-2968.	2.3	31
233	Poly(ethylene dimethacrylate) particles with poly(glycidyl methacrylate) functionalities. Polymer, 1994, 35, 1195-1202.	3.8	8
234	Porous polyHEMA beads prepared by suspension polymerization in aqueous medium. Journal of Applied Polymer Science, 1993, 49, 2041-2050.	2.6	36

#	Article	IF	CITATIONS
235	Poly-(2-hydroxyethyl methacrylate) particles for preoprative endovascular occulusion of extensive angiodysplasias. Journal of Applied Biomaterials: an Official Journal of the Society for Biomaterials, 1993, 4, 253-259.	1.2	3
236	The effect of polymeric porogen on the properties of macroporous poly(glycidyl) Tj ETQq0 0 0 rgBT /Overlock 10	Tf _{3.8} 702	: Td (methacry
237	Hydrogels in endovascular embolization. Biomaterials, 1992, 13, 361-366.	11.4	9
238	Haemostatic activity of ethamsylate and aminocaproic acid adsorbed poly(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10 11.4	Tf ₉ 50 622 Td
239	An e.p.r. study of the effect of suspension polymerization conditions on the properties of glycidyl methacrylate-ethylene dimethacrylate particles. Polymer, 1992, 33, 2051-2056.	3.8	7
240	Use of poly(2-hydroxyethyl methacrylate) for endovascular occlusion in pediatric surgery. Clinical Materials, 1992, 9, 43-48.	0.5	12
241	Chromatographic properties of macroporous beads from poly(GMA-co-EDMA). Angewandte Makromolekulare Chemie, 1992, 195, 139-150.	0.2	10
242	Reactive polymers: 61. Reaction of macroporous poly(glycidyl methacrylate-co-ethylene) Tj ETQq0 0 0 rgBT /Ove	rlogk 10 Tf	f 50,462 Td (c
243	Results of intravascular implantation of methotrexate-saturated emboli. Bulletin of Experimental Biology and Medicine, 1991, 112, 1517-1519.	0.8	O
244	Biologically active thrombin-containing hydrogels based on poly(2-hydroxyethyl methacrylate) for endovascular occlusion. Polimery W Medycynie, 1991, 21, 31-41.	1.7	4
245	Synthesis of polyurethane-based graft copolymers with uniform-size polyether and polyamine segments. Polymer, 1990, 31, 2207-2213.	3.8	9
246	Hydrolyzed macroporous glycidyl methacrylate-ethylene dimethacrylate copolymer with narrow pore size distribution. Journal of Chromatography A, 1989, 475, 187-194.	3.7	18
247	Hydrogels in endovascular embolization. Biomaterials, 1988, 9, 367-371.	11.4	13
248	Hydrolysed macroporous glycidyl methacrylate-ethylene dimethacrylate copolymer sorbent for size-exclusion high-performance liquid chromatography of synthetic polymers and biopolymers. Journal of Chromatography A, 1988, 435, 357-362.	3.7	31
249	E.p.r. study of spin-labelled glycidyl methacrylate-ethylene dimethacrylate and styrene-divinylbenzene suspension copolymers in the swollen state. Polymer, 1988, 29, 500-506.	3.8	11
250	Heterocyclic polymers as catalysts in organic synthesis - effect of macromolecular design and microenvironment on the catalytic activity of polymer-supported (dialkylamino)pyridine catalysts. Macromolecules, 1987, 20, 767-772.	4.8	53
251	Hydrogels in endovascular embolization. III. Radiopaque spherical particles, their preparation and properties. Biomaterials, 1987, 8, 142-145.	11.4	74
252	Hydrogels in endovascular embolization. II. Clinical use of spherical particles. Biomaterials, 1986, 7, 467-470.	11.4	41

#	Article	IF	CITATIONS
253	Hydrogels in endovascular embolization. I. Spherical particles of poly(2-hydroxyethyl methacrylate) and their medico-biological properties. Biomaterials, 1986, 7, 188-192.	11.4	66
254	Title is missing!. Angewandte Makromolekulare Chemie, 1985, 132, 69-80.	0.2	1
255	Title is missing!. Angewandte Makromolekulare Chemie, 1983, 117, 117-129.	0.2	7
256	Investigation of the surface structure of polymers by chromatographic methods. Journal of Chromatography A, 1983, 259, 269-282.	3.7	21
257	The influence of porosity of discrete particles upon their apparent dimensions as measured by the Coulter principle. Powder Technology, 1982, 31, 263-267.	4.2	22
258	Title is missing!. Angewandte Makromolekulare Chemie, 1981, 95, 109-115.	0.2	47
259	Title is missing!. Angewandte Makromolekulare Chemie, 1981, 95, 117-127.	0.2	38
260	Reactive polymers. XXXII. Effect of composition of polymerization feed on morphology and some physical properties of macroporous suspension copolymers glycidyl methacrylate–ethylene dimethacrylate. Journal of Applied Polymer Science, 1981, 26, 411-421.	2.6	44
261	Reactive polymers. XXXIII. The influence of the suspension stabilizer on the morphology of a suspension polymer. Journal of Applied Polymer Science, 1981, 26, 3205-3211.	2.6	22
262	Title is missing!. Angewandte Makromolekulare Chemie, 1980, 87, 127-136.	0.2	14
263	Numerical evaluation of the size distribution of particles obtained by suspension polymerization using data of the Coulter Counter TA II apparatus. Powder Technology, 1980, 25, 125-128.	4.2	4
264	Title is missing!. Angewandte Makromolekulare Chemie, 1978, 71, 51-60.	0.2	5
265	Title is missing!. Angewandte Makromolekulare Chemie, 1977, 63, 23-36.	0.2	72
266	Title is missing!. Angewandte Makromolekulare Chemie, 1977, 63, 37-45.	0.2	30
267	RGDS- and doxorubicin-modified poly[N-(2-hydroxypropyl)methacrylamide]-coated \hat{I}^3 -Fe2O3 nanoparticles for treatment of glioblastoma. Colloid and Polymer Science, 0, , 1.	2.1	2
268	Surface Effect of Iron Oxide Nanoparticles on the Suppression of Oxidative Burst in Cells. Journal of Cluster Science, 0, , 1.	3.3	2