Marianny Y. Combariza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of PHA Production by a Mixed Microbial Culture Using VFA Obtained from the Fermentation of Wastewater from Yeast Industry. Fermentation, 2022, 8, 180.	3.0	12
2	Laser desorption ionization and collision induced dissociastion as powerful tools for FT-ICR mass spectrometric characterization of asphaltene fractions enriched in island and archipelago motifs. Fuel, 2022, 323, 124418.	6.4	6
3	Mass Balance and Compositional Analysis of Biomass Outputs from Cacao Fruits. Molecules, 2022, 27, 3717.	3.8	5
4	Pentacyclic Triterpene Profile and Its Biosynthetic Pathway in Cecropia telenitida as a Prospective Dietary Supplement. Molecules, 2021, 26, 1064.	3.8	4
5	Molecular grafting of nanoparticles onto sisal fibers - adhesion to cementitious matrices and novel functionalities. Journal of Molecular Structure, 2021, 1234, 130171.	3.6	5
6	Advances and Challenges in the Molecular Characterization of Petroporphyrins. Energy & Fuels, 2021, 35, 18056-18077.	5.1	23
7	Effect of the Ionization Source on the Targeted Analysis of Nickel and Vanadyl Porphyrins in Crude Oil. Energy & Fuels, 2021, 35, 14542-14552.	5.1	4
8	Perspectives in Nanocellulose for Crude Oil Recovery: A Minireview. Energy & Fuels, 2021, 35, 15381-15397.	5.1	14
9	Magnetic and electrochemical properties of corner-like and grid-like complexes resulting from the self-assembly of two structurally related bis(hydrazones) and iron (II). Inorganica Chimica Acta, 2021, 526, 120514.	2.4	2
10	Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate. Carbohydrate Polymers, 2021, 274, 118645.	10.2	9
11	Nanocellulose as an inhibitor of water-in-crude oil emulsion formation. Fuel, 2020, 264, 116830.	6.4	24
12	Influence of post-oxidation reactions on the physicochemical properties of TEMPO-oxidized cellulose nanofibers before and after amidation. Cellulose, 2020, 27, 1273-1288.	4.9	23
13	Amidated Cellulose Nanofibrils as Demulsifying Agents for a Natural Water-in-Heavy-Crude-Oil Emulsion. Energy & Fuels, 2020, 34, 14012-14022.	5.1	17
14	Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose, 2020, 27, 9947-9961.	4.9	9
15	Synthesis, characterization, and redox potential properties of a new double-stranded Ni-bis(hydrazone)-based helicate. Journal of Solid State Chemistry, 2020, 292, 121692.	2.9	1
16	Asphaltene Structure Modifiers as a Novel Approach for Viscosity Reduction in Heavy Crude Oils. Energy & Fuels, 2020, 34, 5251-5257.	5.1	7
17	Serjanic Acid Improves Immunometabolic Markers in a Diet-Induced Obesity Mouse Model. Molecules, 2020, 25, 1486.	3.8	4
18	Comprehensive Petroporphyrin Identification in Crude Oils Using Highly Selective Electron Transfer Reactions in MALDI-FTICR-MS. Energy & amp; Fuels, 2019, 33, 3899-3907.	5.1	38

#	Article	IF	CITATIONS
19	Electron-Transfer Ionization of Nanoparticles, Polymers, Porphyrins, and Fullerenes Using Synthetically Tunable α-Cyanophenylenevinylenes as UV MALDI-MS Matrices. ACS Applied Materials & Interfaces, 2019, 11, 10975-10987.	8.0	20
20	Selective ionization by electron-transfer MALDI-MS of vanadyl porphyrins from crude oils. Fuel, 2018, 226, 103-111.	6.4	29
21	Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydrate Polymers, 2018, 189, 169-177.	10.2	45
22	Correlations between Molecular Composition and Adsorption, Aggregation, and Emulsifying Behaviors of PetroPhase 2017 Asphaltenes and Their Thin-Layer Chromatography Fractions. Energy & Fuels, 2018, 32, 2769-2780.	5.1	35
23	Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 2018, 25, 151-165.	4.9	40
24	Molecular characterization of naphthenic acids from heavy crude oils using MALDI FT-ICR mass spectrometry. Fuel, 2018, 231, 126-133.	6.4	21
25	Separation of asphaltene-stabilized water in oil emulsions and immiscible oil/water mixtures using a hydrophobic cellulosic membrane. Fuel, 2018, 231, 297-306.	6.4	32
26	Analysis of naphthenic acids by matrix assisted laser desorption ionization time of flight mass spectrometry. Fuel, 2017, 193, 168-177.	6.4	19
27	Facile cellulose nanofibrils amidation using a â€~one-pot' approach. Cellulose, 2017, 24, 717-730.	4.9	22
28	Oligo p-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI. Journal of the American Society for Mass Spectrometry, 2017, 28, 2548-2560.	2.8	13
29	Exploring Occluded Compounds and Their Interactions with Asphaltene Networks Using High-Resolution Mass Spectrometry. Energy & Fuels, 2016, 30, 4550-4561.	5.1	65
30	Improving compositional space accessibility in (+) APPI FT-ICR mass spectrometric analysis of crude oils by extrography and column chromatography fractionation. Fuel, 2016, 185, 45-58.	6.4	42
31	Influence of nutritional and physicochemical variables on PHB production from raw glycerol obtained from a Colombian biodiesel plant by a wild-type Bacillus megaterium strain. New Biotechnology, 2015, 32, 682-689.	4.4	20
32	High Resolution Mass Spectrometric View of Asphaltene–SiO ₂ Interactions. Energy & Fuels, 2015, 29, 1323-1331.	5.1	42
33	Controlled synthesis of ZnO particles on the surface of natural cellulosic fibers: effect of concentration, heating and sonication. Cellulose, 2015, 22, 1841-1852.	4.9	26
34	Tracing the Compositional Changes of Asphaltenes after Hydroconversion and Thermal Cracking Processes by High-Resolution Mass Spectrometry. Energy & Fuels, 2015, 29, 6330-6341.	5.1	58
35	A mathematical model for polyhydroxybutyrate production by a wild type Bacillus megaterium using raw glycerol from biodiesel industry as sole carbon source. New Biotechnology, 2014, 31, S176.	4.4	1
36	Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation. Green Chemistry, 2013, 15, 2920.	9.0	87

#	Article	IF	CITATIONS
37	In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose, 2012, 19, 1933-1943.	4.9	31
38	Polymeric Inverse Micelles as Selective Peptide Extraction Agents for MALDI-MS Analysis. Analytical Chemistry, 2007, 79, 7124-7130.	6.5	30
39	Gas-phase ion–molecule reactions of divalent metal complex ions: Toward coordination structure analysis by mass spectrometry and some intrinsic coordination chemistry along the way. International Journal of Mass Spectrometry, 2005, 244, 109-124.	1.5	49
40	A comparison of the gas, solution, and solid state coordination environments for the Cu(II) complexes of a series of linear aminopyridine ligands with varying ratios of 5- and 6-membered chelate rings. Inorganica Chimica Acta, 2004, 357, 1141-1151.	2.4	24
41	A comparison of the gas, solution, and solid state coordination environments for the Ni(II) complexes of a series of linear penta- and hexadentate aminopyridine ligands with accessible Ni(III) oxidation states. Inorganica Chimica Acta, 2004, 357, 51-58.	2.4	17
42	Gas-phase reactions of divalent Ni complex ions with acetonitrile: Chelate ring size, inductive, and steric effects. Journal of the American Society for Mass Spectrometry, 2004, 15, 1128-1135.	2.8	16
43	Effect of Coordination Geometry on the Gas-Phase Reactivity of Four-Coordinate Divalent Metal Ion Complexes. Journal of Physical Chemistry A, 2004, 108, 1757-1763.	2.5	37
44	Are Gas-Phase Reactions of Five-Coordinate Divalent Metal Ion Complexes Affected by Coordination Geometry?. Inorganic Chemistry, 2004, 43, 2745-2753.	4.0	17
45	The utility of ion–molecule reactions in a quadrupole ion trap mass spectrometer for analyzing metal complex coordination structure. Analytica Chimica Acta, 2003, 496, 233-248.	5.4	19
46	Spontaneous assembly of a hydrogen-bonded tetrahedron. Chemical Communications, 2002, , 2260-2261.	4.1	9
47	Gas-phase oon-molecule reactions of transition metal complexes: The effect of different coordination spheres on complex reactivity. Journal of the American Society for Mass Spectrometry, 2002, 13, 813-825.	2.8	57
48	Volatile secondary metabolites from Spilanthes americana obtained by simultaneous steam distillation-solvent extraction and supercritical fluid extraction. Journal of Chromatography A, 1996, 752, 223-232.	3.7	64
49	Comparative study of colombian rue oils by high resolution gas chromatography using different detection systems. Journal of Separation Science, 1995, 7, 117-122.	1.0	10
50	Comparative study of Colombian citrus oils by high-resolution gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography A, 1995, 697, 501-513.	3.7	107
51	Limonene concentration in lemon (Citrus volkameriana) peel oil as a function of ripeness. Journal of High Resolution Chromatography, 1994, 17, 643-646.	1.4	21