D Walter Wray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound Assessment of Flow-Mediated Dilation. Hypertension, 2010, 55, 1075-1085.	2.7	525
2	Differential effects of aging on limb blood flow in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H272-H278.	3.2	140
3	On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. Journal of Physiology, 2011, 589, 3855-3866.	2.9	134
4	Acute Reversal of Endothelial Dysfunction in the Elderly After Antioxidant Consumption. Hypertension, 2012, 59, 818-824.	2.7	110
5	Exercise-induced brachial artery vasodilation: role of free radicals. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1516-H1522.	3.2	98
6	Metabolic and Vascular Limb Differences Affected by Exercise, Gender, Age, and Disease. Medicine and Science in Sports and Exercise, 2006, 38, 1792-1796.	0.4	97
7	Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart, 2016, 102, 278-284.	2.9	90
8	Heterogeneous limb vascular responsiveness to shear stimuli during dynamic exercise in humans. Journal of Applied Physiology, 2005, 99, 81-86.	2.5	89
9	Progressive handgrip exercise: evidence of nitric oxide-dependent vasodilation and blood flow regulation in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1101-H1107.	3.2	85
10	Oral antioxidants and cardiovascular health in the exercise-trained and untrained elderly: a radically different outcome. Clinical Science, 2009, 116, 433-441.	4.3	82
11	Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H301-H325.	3.2	78
12	Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H671-H678.	3.2	77
13	Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. International Journal of Cardiology, 2014, 174, 368-375.	1.7	75
14	Vascular Dysfunction and Chronic Obstructive Pulmonary Disease. Hypertension, 2014, 63, 459-467.	2.7	70
15	Inhibition of \hat{i} ±-adrenergic vasoconstriction in exercising human thigh muscles. Journal of Physiology, 2004, 555, 545-563.	2.9	67
16	Evidence of preserved endothelial function and vascular plasticity with age. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1271-H1277.	3.2	61
17	Aging affects vascular structure and function in a limb-specific manner. Journal of Applied Physiology, 2008, 105, 1661-1670.	2.5	60
18	Does Brachial Artery Flow–Mediated Vasodilation Provide a Bioassay for NO?. Hypertension, 2013, 62, 345-351.	2.7	56

#	Article	IF	CITATIONS
19	Limb-specific differences in flow-mediated dilation: the role of shear rate. Journal of Applied Physiology, 2007, 103, 843-851.	2.5	55
20	Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. Journal of Applied Physiology, 2017, 122, 354-360.	2.5	55
21	Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement. Journal of Physiology, 2010, 588, 4507-4517.	2.9	54
22	Impaired skeletal muscle vasodilation during exercise in heart failure with preserved ejection fraction. International Journal of Cardiology, 2016, 211, 14-21.	1.7	52
23	Onset exercise hyperaemia in humans: partitioning the contributors. Journal of Physiology, 2005, 565, 1053-1060.	2.9	51
24	Endothelin-1-mediated vasoconstriction at rest and during dynamic exercise in healthy humans. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2550-H2556.	3.2	50
25	Limb movement-induced hyperemia has a central hemodynamic component: evidence from a neural blockade study. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1693-H1700.	3.2	48
26	Impact of Aldosterone Receptor Blockade Compared With Thiazide Therapy on Sympathetic Nervous System Function in Geriatric Hypertension. Hypertension, 2010, 55, 1217-1223.	2.7	43
27	Endothelin-AÂ-Mediated Vasoconstriction During Exercise With Advancing Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 554-565.	3.6	40
28	Role of α ₁ -adrenergic vasoconstriction in the regulation of skeletal muscle blood flow with advancing age. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H497-H504.	3.2	39
29	Multiparametric NMR-Based Assessment of Skeletal Muscle Perfusion and Metabolism During Exercise in Elderly Persons: Preliminary Findings. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 968-974.	3.6	38
30	The effect of oral antioxidants on brachial artery flow-mediated dilation following 5 and 10Âmin of ischemia. European Journal of Applied Physiology, 2009, 107, 445-453.	2.5	36
31	Acute sympathetic vasoconstriction at rest and during dynamic exercise in cyclists and sedentary humans. Journal of Applied Physiology, 2007, 102, 704-712.	2.5	35
32	Angiotensin II in the Elderly. Hypertension, 2008, 51, 1611-1616.	2.7	35
33	Antioxidants and aging: NMR-based evidence of improved skeletal muscle perfusion and energetics. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1870-H1875.	3.2	33
34	Impact of body position on central and peripheral hemodynamic contributions to movement-induced hyperemia: implications for rehabilitative medicine. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1885-H1891.	3.2	33
35	Hemodynamic responses to small muscle mass exercise in heart failure patients with reduced ejection fraction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1512-H1520.	3.2	33
36	Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction. Clinical Rheumatology, 2015, 34, 905-913.	2.2	33

#	Article	IF	CITATIONS
37	Vascular Function and the Role of Oxidative Stress in Heart Failure, Heart Transplant, and Beyond. Hypertension, 2012, 60, 659-668.	2.7	32
38	Taming the "sleeping giantâ€ŧ the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H162-H169.	3.2	32
39	Angiotensin II potentiates $\hat{l}\pm$ -adrenergic vasoconstriction in the elderly. Clinical Science, 2013, 124, 413-422.	4.3	30
40	Peripheral vascular function, oxygen delivery and utilization: the impact of oxidative stress in aging and heart failure with reduced ejection fraction. Heart Failure Reviews, 2017, 22, 149-166.	3.9	28
41	Identifying the role of group III/IV muscle afferents in the carotid baroreflex control of mean arterial pressure and heart rate during exercise. Journal of Physiology, 2018, 596, 1373-1384.	2.9	27
42	Sex and limb-specific ischemic reperfusion and vascular reactivity. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1100-H1108.	3.2	25
43	Dynamic carotid baroreflex control of the peripheral circulation during exercise in humans. Journal of Physiology, 2004, 559, 675-684.	2.9	24
44	Limitations to vasodilatory capacity and V̇o2 max in trained human skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2491-H2497.	3.2	24
45	Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H765-H774.	3.2	24
46	Exercise-induced inhibition of angiotensin II vasoconstriction in human thigh muscle. Journal of Physiology, 2006, 577, 727-737.	2.9	23
47	Contribution of nitric oxide to brachial artery vasodilation during progressive handgrip exercise in the elderly. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R893-R899.	1.8	21
48	α-Adrenergic receptor regulation of skeletal muscle blood flow during exercise in heart failure patients with reduced ejection fraction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R512-R524.	1.8	21
49	Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H977-H985.	3.2	20
50	A differing role of oxidative stress in the regulation of central and peripheral hemodynamics during exercise in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1237-H1244.	3.2	18
51	Cardiovascular responses to rhythmic handgrip exercise in heart failure with preserved ejection fraction. Journal of Applied Physiology, 2020, 129, 1267-1276.	2.5	17
52	Impact of acute antioxidant administration on inflammation and vascular function in heart failure with preserved ejection fraction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R607-R614.	1.8	14
53	Sacubitril-valsartan improves conduit vessel function and functional capacity and reduces inflammation in heart failure with reduced ejection fraction. Journal of Applied Physiology, 2021, 130, 256-268.	2.5	13
54	Altered central and peripheral haemodynamics during rhythmic handgrip exercise in young adults with SARSâ€CoVâ€2. Experimental Physiology, 2022, 107, 708-721.	2.0	13

#	Article	IF	CITATIONS
55	The Paradox of Oxidative Stress and Exercise With Advancing Age. Exercise and Sport Sciences Reviews, 2011, 39, 68-76.	3.0	12
56	Human Vascular Aging. Exercise and Sport Sciences Reviews, 2010, 38, 177-185.	3.0	11
57	Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1375-H1381.	3.2	11
58	Metaboreceptor activation in heart failure with reduced ejection fraction: Linking cardiac and peripheral vascular haemodynamics. Experimental Physiology, 2018, 103, 807-818.	2.0	10
59	The impact of obesity on the regulation of muscle blood flow during exercise in patients with heart failure with a preserved ejection fraction. Journal of Applied Physiology, 2022, 132, 1240-1249.	2.5	8
60	†̃Fineâ€ŧuning' blood flow to the exercising muscle with advancing age: an update. Experimental Physiology, 2015, 100, 589-602.	2.0	7
61	Sympathoinhibitory effect of sacubitril-valsartan in heart failure with reduced ejection fraction: A pilot study. Autonomic Neuroscience: Basic and Clinical, 2021, 235, 102834.	2.8	7
62	Endogenous endothelin-1 and femoral artery shear rate. Journal of Hypertension, 2016, 34, 266-273.	0.5	6
63	Direct Assessment of Muscle Sympathetic Nerve Activity During Exercise in Heart Failure With Preserved Ejection Fraction: A Case Report. Journal of Cardiac Failure, 2021, 27, 114-116.	1.7	6
64	Acute oral tetrahydrobiopterin administration ameliorates endothelial dysfunction in systemic sclerosis. Clinical and Experimental Rheumatology, 2017, 35 Suppl 106, 167-172.	0.8	6
65	Locomotor Muscle Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. Hypertension, 2021, 78, 1750-1759.	2.7	5
66	Diminished baroreflex-induced vasoconstriction following alpha-2 adrenergic receptor blockade in humans. Autonomic Neuroscience: Basic and Clinical, 2008, 138, 114-117.	2.8	4
67	Attenuated nitric oxide bioavailability in systemic sclerosis: Evidence from the novel assessment of passive leg movement. Experimental Physiology, 2018, 103, 1412-1424.	2.0	4
68	Effect of histamine-receptor antagonism on leg blood flow during exercise. Journal of Applied Physiology, 2020, 128, 1626-1634.	2.5	4
69	Chronic antioxidant administration restores macrovascular function in patients with heart failure with reduced ejection fraction. Experimental Physiology, 2020, 105, 1384-1395.	2.0	4
70	The role of endothelin A receptors in peripheral vascular control at rest and during exercise in patients with hypertension. Journal of Physiology, 2020, 598, 71-84.	2.9	3
71	Vascular function in continuous-flow left ventricular assist device recipients: effect of a single pulsatility treatment session. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R425-R437.	1.8	2
72	Tetrahydrobiopterin Administration Augments Exercise-Induced Hyperemia and Endothelial Function in Patients With Systemic Sclerosis. Frontiers in Medicine, 2021, 8, 791689.	2.6	2

#	Article	IF	CITATIONS
73	Response to Antioxidants and Endothelial Dysfunction in Young and Elderly People: Is Flow-Mediated Dilation Useful to Assess Acute Effects?. Hypertension, 2012, 60, .	2.7	1
74	The Influence of an Antioxidant Cocktail on Vascular Function in COPD. FASEB Journal, 2008, 22, 1235.16.	0.5	1
75	The role of αâ€adrenergic receptors in mediating beatâ€byâ€beat sympathetic vascular transduction in resting humans. FASEB Journal, 2013, 27, 1119.2.	0.5	1
76	In FMD, NO is actually "the middle man― Journal of Applied Physiology, 2005, 99, 1624-1624.	2.5	0
77	Sustainable shear: a new approach for assessment of lower limb vascular function?. Experimental Physiology, 2017, 102, 619-620.	2.0	0
78	Oxidative Stress and Exerciseâ€Induced Flowâ€Mediated Dilation in COPD: Insight into Skeletal Muscle Dysfunction. FASEB Journal, 2008, 22, 1235.15.	0.5	0
79	Acute Antioxidant Consumption Improves Vascular Function in the Elderly. FASEB Journal, 2010, 24, 1039.15.	0.5	0
80	Alpha Adrenergic Sensitivity and Temperature in Human Arteries: The Role of Nitric Oxide. FASEB Journal, 2010, 24, 804.15.	0.5	0
81	Flowâ€Mediated Vasodilation and Endothelinâ€1. FASEB Journal, 2010, 24, .	0.5	0
82	Regulation of the pressor reflex response during progressive handgrip exercise in heart failure. FASEB Journal, 2012, 26, 1138.13.	0.5	0
83	Limb Movementâ€Induced Central and Peripheral Hemodynamics in Heart Failure: The Role of Afferent Feedback. FASEB Journal, 2013, 27, 943.21.	0.5	0
84	Role of Alphaâ€1 Adrenergic Vasoconstriction in Regulating Skeletal Muscle Blood Flow during Single Leg Knee Extension Exercise with Advancing Age. FASEB Journal, 2018, 32, 594.5.	0.5	0
85	Sex Differences in the Sympathetic Restraint of Skeletal Muscle Blood Flow in the Human Leg Vasculature. FASEB Journal, 2018, 32, 594.4.	0.5	0
86	Cardiovascular Responses to Dynamic Handgrip Exercise in Patients with Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2018, 32, 726.1.	0.5	0
87	Decline in conduit artery function across the healthy human adult lifespan: influence of successful aging. FASEB Journal, 2018, 32, 578.5.	0.5	0
88	The Impact of Acute Tetrahydrobiopterin Administration on Plasma Adropin Concentration in Patients with Systemic Sclerosis. FASEB Journal, 2018, 32, 902.20.	0.5	0
89	Impact of Acute Antioxidant Administration on Inflammation and Vascular Function in Heart Failure with Preserved Ejection Fraction. FASEB Journal, 2019, 33, 829.9.	0.5	0
90	The Impact of Chronic Antioxidant Administration on Sympathetic Nervous System Activity and Vascular Function in Heart Failure Patients with a Reduced Ejection Fraction. FASEB Journal, 2019, 33, 564.4.	0.5	0

#	Article	IF	CITATIONS
91	The Role of Endothelinâ€1 in Exercising Blood Flow and Blood Pressure Regulation in Patients with Hypertension. FASEB Journal, 2019, 33, 696.11.	0.5	0