
Sriram Kanvah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701278/publications.pdf Version: 2024-02-01

SDIDAM KANNAH

#	Article	IF	CITATIONS
1	Fluorescent probes for targeting endoplasmic reticulum: design strategies and their applications. Chemical Communications, 2022, 58, 2413-2429.	4.1	30
2	Detection of illicit GHB using AIE active fluorene containing α-Cyanostilbenes. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113844.	3.9	6
3	White light emission from AlEâ€active luminescent organic materials. Aggregate, 2022, 3, .	9.9	16
4	Benzimidazole-acrylonitriles as chemosensors for picric acid detection. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112874.	3.9	19
5	A competitive effect of acceptor substitutions on the opto-electronic features of triphenylamine cored di α-cyanostilbene derivatives. New Journal of Chemistry, 2021, 45, 4683-4693.	2.8	8
6	Stress-responsive rhodamine bioconjugates for membrane-potential-independent mitochondrial live-cell imaging and tracking. Organic and Biomolecular Chemistry, 2021, 19, 10090-10096.	2.8	3
7	Probing Variations of Reduction Activity at the Plasma Membrane Using a Targeted Ratiometric FRET Probe. ACS Applied Materials & Interfaces, 2021, 13, 40315-40324.	8.0	12
8	Live-cell imaging of the nucleolus and mapping mitochondrial viscosity with a dual function fluorescent probe. Organic and Biomolecular Chemistry, 2021, 19, 3389-3395.	2.8	15
9	Near infrared emitting molecular rotor based on merocyanine for probing the viscosity of cellular lipid environments. Materials Chemistry Frontiers, 2021, 5, 2459-2469.	5.9	16
10	Perturbing the AIEE activity of pyridine functionalized α-cyanostilbenes with donor substitutions: an experimental and DFT study. New Journal of Chemistry, 2020, 44, 218-230.	2.8	25
11	Imaging mitochondria and plasma membrane in live cells using solvatochromic styrylpyridines. Journal of Photochemistry and Photobiology B: Biology, 2020, 203, 111732.	3.8	11
12	Superior Resonant Nanocavities Engineering on the Photonic Crystal-Coupled Emission Platform for the Detection of Femtomolar lodide and Zeptomolar Cortisol. ACS Applied Materials & Interfaces, 2020, 12, 34323-34336.	8.0	61
13	Live-cell imaging of lipid droplets using solvatochromic coumarin derivatives. Organic and Biomolecular Chemistry, 2020, 18, 5608-5616.	2.8	14
14	Aggregation-Induced Emission and Organogels with Chiral and Racemic Pyrene-Substituted Cyanostyrenes. Langmuir, 2020, 36, 2720-2728.	3.5	18
15	White light emission in water through admixtures of donor–π–acceptor siblings: experiment and simulation. New Journal of Chemistry, 2019, 43, 11701-11709.	2.8	5
16	One―and Two omponent Organogels Containing Cyanostilbene without any Auxiliary Substituents. ChemPlusChem, 2019, 84, 1789-1795.	2.8	10
17	Developing Photosensitizer-Cobaloxime Hybrids for Solar-Driven H ₂ Production in Aqueous Aerobic Conditions. Journal of Visualized Experiments, 2019, , .	0.3	2
18	Fluorescence enhancement of cationic styrylcoumarin-cucurbit[7]uril complexes: Enhanced stability and cellular membrane localization. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112062.	3.9	12

Sriram Kanvah

#	Article	IF	CITATIONS
19	Branching effect on triphenylamine-CF ₃ cyanostilbenes: enhanced emission and aggregation in water. New Journal of Chemistry, 2019, 43, 4106-4115.	2.8	10
20	Cationic red-emitting probes for the rapid and selective detection of SO ₂ derivatives in aqueous and cellular environments. New Journal of Chemistry, 2019, 43, 584-592.	2.8	29
21	A "turn-on―Michler's ketone–benzimidazole fluorescent probe for selective detection of serum albumins. New Journal of Chemistry, 2019, 43, 10859-10867.	2.8	11
22	Cationic red emitting fluorophore: A light up NIR fluorescent probe for G4-DNA. Journal of Photochemistry and Photobiology B: Biology, 2019, 190, 128-136.	3.8	16
23	A "turn-off―red-emitting fluorophore for nanomolar detection of heparin. Physical Chemistry Chemical Physics, 2018, 20, 13263-13270.	2.8	27
24	Organogels composed of trifluoromethyl anthryl cyanostyrenes: enhanced emission and self-assembly. Photochemical and Photobiological Sciences, 2018, 17, 395-403.	2.9	13
25	Styrylisoxazole-based fluorescent probes for the detection of hydrogen sulfide. Photochemical and Photobiological Sciences, 2018, 17, 42-50.	2.9	12
26	Photophysical studies of pyrenyl cyanostyrenes: effect of trifluoromethyl substitution on gelation. New Journal of Chemistry, 2018, 42, 18297-18304.	2.8	9
27	Emission and Color Tuning of Cyanostilbenes and White Light Emission. ACS Omega, 2018, 3, 17376-17385.	3.5	25
28	Donorâ€Acceptor Styrylisoxazoles: Solvatochromism and Large First Hyperpolarizability. ChemistrySelect, 2018, 3, 7416-7421.	1.5	0
29	pH-responsive molecular assemblies of pyridylbutadiene derivative with cucurbit[7]uril. RSC Advances, 2018, 8, 16738-16745.	3.6	10
30	α-Cyanostyrenes with Pyrene Scaffold: Unique Emission through Aggregation. ChemistrySelect, 2017, 2, 1902-1910.	1.5	12
31	Carbohydrate Tethered Cyanostilbene Fluorogen: Unique Emission and Preferential Protein Binding. ChemistrySelect, 2017, 2, 405-414.	1.5	2
32	Red-emitting cationic fluorophore as a probe for anionic surfactants. Dyes and Pigments, 2017, 142, 230-236.	3.7	20
33	Self-Assembly Tuning of α-Cyanostilbene Fluorogens: Aggregates to Nanostructures. Journal of Physical Chemistry C, 2017, 121, 22478-22486.	3.1	17
34	Rational Tuning of AIEE Active Coumarin Based α-Cyanostilbenes toward Far-Red/NIR Region Using Different π-Spacer and Acceptor Units. Journal of Physical Chemistry C, 2016, 120, 10757-10769.	3.1	52
35	Green synthesis of 1,4-benzodiazepines over La ₂ O ₃ and La(OH) ₃ catalysts: possibility of Langmuir–Hinshelwood adsorption. RSC Advances, 2016, 6, 103455-103462.	3.6	25
36	A sensitive AIEE probe for amphiphilic compounds. New Journal of Chemistry, 2016, 40, 4588-4594.	2.8	9

SRIRAM KANVAH

#	Article	IF	CITATIONS
37	Influence of imidazolium ionic liquids on fluorescence of push-pull diphenylbutadienes. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 55-62.	3.9	2
38	Photoisomerization of <i>Trans Ortho</i> â€; <i>Meta</i> â€; <i>Para</i> â€Nitro Diarylbutadienes: A Case of Regioselectivity. Photochemistry and Photobiology, 2015, 91, 1324-1331.	2.5	7
39	Cholesterol-tethered AIEE fluorogens: formation of self-assembled nanostructures. RSC Advances, 2015, 5, 33049-33057.	3.6	11
40	Synthesis of functionalized 1,2,3-triazoles using Bi ₂ WO ₆ nanoparticles as efficient and reusable heterogeneous catalyst in aqueous medium. RSC Advances, 2015, 5, 57842-57846.	3.6	19
41	Synthesis of functionalized isoxazole–oxindole hybrids via on water, catalyst free vinylogous Henry and 1,6-Michael addition reactions. RSC Advances, 2015, 5, 81768-81773.	3.6	25
42	One-pot synthesis of functionalized isoxazole–thiolane hybrids via Knoevenagel condensation and domino sulfa-1,6-Michael/intramolecular vinylogous Henry reactions. RSC Advances, 2015, 5, 94474-94478.	3.6	19
43	Neutral and cationic pyridylbutadienes: solvatochromism and fluorescence response with sodium cholate. Photochemical and Photobiological Sciences, 2015, 14, 2159-2167.	2.9	12
44	Amino substituted 4-pyridylbutadienes: Synthesis and fluorescence investigations. Dyes and Pigments, 2015, 123, 341-348.	3.7	9
45	α-Cyanostilbene based fluorophores: aggregation-induced enhanced emission, solvatochromism and the pH effect. New Journal of Chemistry, 2014, 38, 5736-5746.	2.8	54
46	Selective photoisomerization of methyl substituted nitro diphenylbutadienes. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 293, 40-49.	3.9	6
47	Recyclable Bi ₂ WO ₆ -nanoparticle mediated one-pot multicomponent reactions in aqueous medium at room temperature. RSC Advances, 2014, 4, 54168-54174.	3.6	43
48	Combustion synthesized La ₂ O ₃ and La(OH) ₃ : recyclable catalytic activity towards Knoevenagel and Hantzsch reactions. RSC Advances, 2014, 4, 55407-55416.	3.6	53
49	Diphenylpolyene-cholesterol conjugates as fluorescent probes for microheterogeneous media. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 281, 18-26.	3.9	8
50	Bicycle pedal photoisomerization of 1-phenyl-4-(4-pyridyl)-1,3-butadienes in glassy isopentane at 77 K. Photochemical and Photobiological Sciences, 2013, 12, 1754-1760.	2.9	6
51	Effect of positively charged backbone groups on radical cation migration and reaction in duplex DNA. Canadian Journal of Chemistry, 2011, 89, 326-330.	1.1	1
52	Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 2010, 43, 280-287.	15.6	300
53	One-electron oxidation of DNA: thymine versus guanine reactivity. Organic and Biomolecular Chemistry, 2010, 8, 1340.	2.8	20
54	Oxidative damage to DNA: Inhibition of guanine damage. Pure and Applied Chemistry, 2006, 78, 2297-2304.	1.9	15

SRIRAM KANVAH

#	Article	IF	CITATIONS
55	The sacrificial role of easily oxidizable sites in the protection of DNA from damage. Nucleic Acids Research, 2005, 33, 5133-5138.	14.5	41
56	One-Electron Oxidation of DNA:  The Effect of Replacement of Cytosine with 5-Methylcytosine on Long-Distance Radical Cation Transport and Reaction. Journal of the American Chemical Society, 2004, 126, 7341-7344.	13.7	22
57	Effect of Base Sequence and Hydration on the Electronic and Hole Transport Properties of Duplex DNA: Theory and Experimentâ€. Journal of Physical Chemistry A, 2003, 107, 3525-3537.	2.5	58
58	Long-Range Oxidative Damage to DNA:  Protection of Guanines by a Nonspecifically Bound Disulfide. Journal of the American Chemical Society, 2002, 124, 11286-11287.	13.7	20
59	Photophysical studies of substituted 1,2-diarylethenes: twisted intramolecular charge transfer fluorescence in dimethoxycyano-substituted 1,2-diarylethene. Perkin Transactions II RSC, 2001, , 395-401.	1.1	17
60	α,ï‰-Diphenylpolyenes Cabable of Exhibiting Twisted Intramolecular Charge Transfer Fluorescence: A Fluorescence and Fluorescence Probe Study of Nitro- and Nitrocyano-Substituted 1,4-Diphenylbutadienesâ€. Journal of Physical Chemistry A, 2000, 104, 464-471.	2.5	70
61	Effect of microheterogeneous media on the fluorescence and fluorescence probe properties of donor–acceptor diarylbutadienes. New Journal of Chemistry, 2000, 24, 639-646.	2.8	14
62	Twisted intramolecular charge transfer fluorescence in nitro-substituted α,ï‰-diphenylpolyene compounds. New Journal of Chemistry, 1999, 23, 1075-1078.	2.8	10