Vittorio Maglione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5701174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in a Gene Encoding a Novel Protein Containing a Phosphotyrosine-Binding Domain Cause Type 2 Cerebral Cavernous Malformations. American Journal of Human Genetics, 2003, 73, 1459-1464.	6.2	319
2	Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain, 2003, 126, 946-955.	7.6	173
3	Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3528-3533.	7.1	140
4	Impaired Ganglioside Metabolism in Huntington's Disease and Neuroprotective Role of GM1. Journal of Neuroscience, 2010, 30, 4072-4080.	3.6	117
5	Low frequency of PDCD10 mutations in a panel of CCM3 probands: potential for a fourth CCM locus. Human Mutation, 2006, 27, 118-118.	2.5	98
6	Severe ultrastructural mitochondrial changes in lymphoblasts homozygous for Huntington disease mutation. Mechanisms of Ageing and Development, 2006, 127, 217-220.	4.6	85
7	FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Human Molecular Genetics, 2014, 23, 2251-2265.	2.9	84
8	Suicidal ideation in a European Huntington's disease population. Journal of Affective Disorders, 2013, 151, 248-258.	4.1	74
9	Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Frontiers in Neuroscience, 2018, 12, 249.	2.8	66
10	Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. Journal of Cellular and Molecular Medicine, 2015, 19, 2540-2548.	3.6	62
11	Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington Disease. Scientific Reports, 2017, 7, 41316.	3.3	62
12	Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease. Scientific Reports, 2017, 7, 5280.	3.3	60
13	Tractography of the Corpus Callosum in Huntington's Disease. PLoS ONE, 2013, 8, e73280.	2.5	56
14	Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO Journal, 2018, 37, .	7.8	56
15	The V471A Polymorphism in Autophagy-Related Gene ATG7 Modifies Age at Onset Specifically in Italian Huntington Disease Patients. PLoS ONE, 2013, 8, e68951.	2.5	49
16	Onset and pre-onset studies to define the Huntington's disease natural history. Brain Research Bulletin, 2001, 56, 233-238.	3.0	43
17	De novo Synthesis of Sphingolipids Is Defective in Experimental Models of Huntington's Disease. Frontiers in Neuroscience, 2017, 11, 698.	2.8	43
18	MRI measures of corpus callosum iron and myelin in early Huntington's disease. Human Brain Mapping, 2014, 35, 3143-3151.	3.6	42

VITTORIO MAGLIONE

#	Article	IF	CITATIONS
19	The gender effect in juvenile Huntington disease patients of Italian origin. American Journal of Medical Genetics Part A, 2004, 125B, 92-98.	2.4	41
20	Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood–brain barrier integrity and exerts therapeutic effect in an animal model of Huntington's disease. Human Molecular Genetics, 2018, 27, 2490-2501.	2.9	38
21	The platelet maximum number of A2A-receptor binding sites (Bmax) linearly correlates with age at onset and CAG repeat expansion in Huntington's disease patients with predominant chorea. Neuroscience Letters, 2006, 393, 27-30.	2.1	35
22	Huntingtin fragmentation and increased caspase 3, 8 and 9 activities in lymphoblasts with heterozygous and homozygous Huntington's disease mutation. Mechanisms of Ageing and Development, 2006, 127, 213-216.	4.6	35
23	The Corticospinal Tract in Huntington's Disease. Cerebral Cortex, 2015, 25, 2670-2682.	2.9	33
24	Highly variable penetrance in subjects affected with cavernous cerebral angiomas (CCM) carrying novel CCM1 and CCM2 mutations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 691-695.	1.7	32
25	Adenosine A2A receptor dysfunction correlates with age at onset anticipation in blood platelets of subjects with Huntington's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 139B, 101-105.	1.7	31
26	Genotype-dependent priming to self- and xeno-cannibalism in heterozygous and homozygous lymphoblasts from patients with Huntington's disease. Journal of Neurochemistry, 2006, 98, 1090-1099.	3.9	31
27	ZPLD1 gene is disrupted in a patient with balanced translocation that exhibits cerebral cavernous malformations. Neuroscience, 2008, 155, 345-349.	2.3	30
28	Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1596-1604.	3.8	29
29	The S1P Axis: New Exciting Route for Treating Huntington's Disease. Trends in Pharmacological Sciences, 2018, 39, 468-480.	8.7	29
30	Stimulation of Sphingosine Kinase 1 (SPHK1) Is Beneficial in a Huntington's Disease Pre-clinical Model. Frontiers in Molecular Neuroscience, 2019, 12, 100.	2.9	28
31	Changes of peripheral TGF-β1 depend on monocytes-derived macrophages in Huntington disease. Molecular Brain, 2013, 6, 55.	2.6	26
32	New Therapeutic Drugs from Bioactive Natural Molecules: The Role of Gut Microbiota Metabolism in Neurodegenerative Diseases. Current Drug Metabolism, 2018, 19, 478-489.	1.2	26
33	DNA instability in replicating Huntington's disease lymphoblasts. BMC Medical Genetics, 2009, 10, 11.	2.1	24
34	Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models. Frontiers in Neuroscience, 2016, 10, 457.	2.8	24
35	Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington's disease Human Molecular Genetics, 2019, 28, 4012-4021	2.9	23
36	A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 582.	4.1	21

VITTORIO MAGLIONE

#	Article	IF	CITATIONS
37	NMDA receptor gene variations as modifiers in Huntington disease: a replication study. PLOS Currents, 2011, 3, RRN1247.	1.4	20
38	An interplay between UCP2 and ROS protects cells from high-salt-induced injury through autophagy stimulation. Cell Death and Disease, 2021, 12, 919.	6.3	20
39	Highly disabling cerebellar presentation in Huntington disease. European Journal of Neurology, 2003, 10, 443-444.	3.3	19
40	Nitric Oxide Dysregulation in Platelets from Patients with Advanced Huntington Disease. PLoS ONE, 2014, 9, e89745.	2.5	19
41	Terapeutic Potential of Microencapsulated Sertoli Cells in Huntington Disease. CNS Neuroscience and Therapeutics, 2016, 22, 686-690.	3.9	19
42	Curcumin C3 complex®/Bioperine® has antineoplastic activity in mesothelioma: an in vitro and in vivo analysis. Journal of Experimental and Clinical Cancer Research, 2019, 38, 360.	8.6	19
43	Acute manganese treatment restores defective autophagic cargo loading in Huntington's disease cell lines. Human Molecular Genetics, 2019, 28, 3825-3841.	2.9	18
44	Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6469.	4.1	17
45	Genotype-, aging-dependent abnormal caspase activity in Huntington disease blood cells. Journal of Neural Transmission, 2011, 118, 1599-1607.	2.8	15
46	The longevity-associated variant of BPIFB4 improves a CXCR4-mediated striatum–microglia crosstalk preventing disease progression in a mouse model of Huntington's disease. Cell Death and Disease, 2020, 11, 546.	6.3	15
47	Curcumin-Loaded Nanoparticles Based on Amphiphilic Hyaluronan-Conjugate Explored as Targeting Delivery System for Neurodegenerative Disorders. International Journal of Molecular Sciences, 2020, 21, 8846.	4.1	15
48	Mutant huntingtin interacts with the sterol regulatory element-binding proteins and impairs their nuclear import. Human Molecular Genetics, 2020, 29, 418-431.	2.9	13
49	Mitochondrial Respiration Changes in R6/2 Huntington's Disease Model Mice during Aging in a Brain Region Specific Manner. International Journal of Molecular Sciences, 2020, 21, 5412.	4.1	12
50	Cavernous angiomas of the nervous system in Italy: clinical and genetic study. Neurological Sciences, 2000, 21, 129-134.	1.9	11
51	New Huntington disease mutation arising from a paternal CAG34allele showing somatic length variation in serially passaged lymphoblasts. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 133B, 127-130.	1.7	9
52	Assessment of Blood-brain Barrier Permeability by Intravenous Infusion of FITC-labeled Albumin in a Mouse Model of Neurodegenerative Disease. Journal of Visualized Experiments, 2017, , .	0.3	9
53	Treatment with K6PC-5, a selective stimulator of SPHK1, ameliorates intestinal homeostasis in an an an animal model of Huntington's disease. Neurobiology of Disease, 2020, 143, 105009.	4.4	9
54	Differential Expression of Sphingolipid Metabolizing Enzymes in Spontaneously Hypertensive Rats: A Possible Substrate for Susceptibility to Brain and Kidney Damage. International Journal of Molecular Sciences, 2021, 22, 3796.	4.1	8

VITTORIO MAGLIONE

#	Article	IF	CITATIONS
55	Italian Huntington disease patients-data and tissue bank. Neurological Sciences, 2003, 24, 215-216.	1.9	5
56	Motor phenotype is not associated with vascular dysfunction in symptomatic Huntington's disease transgenic R6/2 (160 CAG) mice. Scientific Reports, 2017, 7, 42797.	3.3	4
57	Glyco-sphingo biology: a novel perspective for potential new treatments in Huntington's disease. Neural Regeneration Research, 2017, 12, 1439.	3.0	2
58	Brain Region and Cell Compartment Dependent Regulation of Electron Transport System Components in Huntington's Disease Model Mice. Brain Sciences, 2021, 11, 1267.	2.3	0