Stephan G Anagnostaras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5700880/publications.pdf

Version: 2024-02-01

45 papers 4,527 citations

201674 27 h-index 276875 41 g-index

47 all docs

47 docs citations

47 times ranked

4374 citing authors

#	Article	IF	CITATIONS
1	MDMA and memory, addiction, and depression: dose-effect analysis. Psychopharmacology, 2022, 239, 935-949.	3.1	18
2	Altered Phosphorylation of the Proteasome Subunit Rpt6 Has Minimal Impact on Synaptic Plasticity and Learning. ENeuro, 2021, 8, ENEURO.0073-20.2021.	1.9	5
3	Dopamine and norepinephrine transporter inhibition for long-term fear memory enhancement. Behavioural Brain Research, 2020, 378, 112266.	2.2	7
4	Quantifying the Acoustic Startle Response in Mice Using Standard Digital Video. Frontiers in Behavioral Neuroscience, 2020, 14, 83.	2.0	13
5	Cognitive Effects of MDMA in Laboratory Animals: A Systematic Review Focusing on Dose. Pharmacological Reviews, 2019, 71, 413-449.	16.0	18
6	MDMA and Pavlovian Fear Memory: Doseâ€Effect Analysis. FASEB Journal, 2019, 33, 666.6.	0.5	0
7	Proteasome phosphorylation regulates cocaine-induced sensitization. Molecular and Cellular Neurosciences, 2018, 88, 62-69.	2.2	5
8	The Synergistic Effect of Dopamine and Norepinephrine Transporter Inhibition on Cognitive Enhancement. FASEB Journal, 2018, 32, 688.1.	0.5	0
9	Learning and Memory in Addiction. , 2017, , 523-538.		7
10	Cocaine sensitization is mediated by proteasome function in an activityâ€dependent manner. FASEB Journal, 2015, 29, LB499.	0.5	0
11	Inhibition of PKC disrupts addiction-related memory. Frontiers in Behavioral Neuroscience, 2014, 8, 70.	2.0	16
12	Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation. Pharmacological Reviews, 2014, 66, 193-221.	16.0	211
13	Animal model of methylphenidate's long-term memory-enhancing effects. Learning and Memory, 2014, 21, 82-89.	1.3	33
14	Methylphenidate enhances acquisition and retention of spatial memory. Neuroscience Letters, 2014, 567, 45-50.	2.1	23
15	The competitive NMDA receptor antagonist CPP disrupts cocaine-induced conditioned place preference, but spares behavioral sensitization. Behavioural Brain Research, 2013, 239, 155-163.	2.2	23
16	MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learning and Memory, 2013, 20, 505-517.	1.3	40
17	Interactions between modafinil and cocaine during the induction of conditioned place preference and locomotor sensitization in mice: Implications for addiction. Behavioural Brain Research, 2012, 235, 105-112.	2.2	31
18	Interdependence of measures in Pavlovian conditioned freezing. Neuroscience Letters, 2011, 505, 134-139.	2.1	26

#	Article	IF	Citations
19	An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 2011, 34, 504-514.	8.6	207
20	Automated assessment of Pavlovian conditioned freezing and shock reactivity in mice using the VideoFreeze system. Frontiers in Behavioral Neuroscience, $2010, 4, .$	2.0	152
21	Amphetamine and extinction of cued fear. Neuroscience Letters, 2010, 468, 18-22.	2.1	23
22	Sleep deprivation and Pavlovian fear conditioning. Learning and Memory, 2009, 16, 595-599.	1.3	18
23	Modafinil and memory: Effects of modafinil on Morris water maze learning and Pavlovian fear conditioning Behavioral Neuroscience, 2009, 123, 257-266.	1.2	65
24	Memory and psychostimulants: modulation of Pavlovian fear conditioning by amphetamine in C57BL/6 mice. Psychopharmacology, 2009, 202, 197-206.	3.1	41
25	Sleep selectively enhances hippocampus-dependent memory in mice Behavioral Neuroscience, 2009, 123, 713-719.	1.2	49
26	A High Through-Put Reverse Genetic Screen Identifies Two Genes Involved in Remote Memory in Mice. PLoS ONE, 2008, 3, e2121.	2.5	28
27	Cocaine and Pavlovian fear conditioning: Dose–effect analysis. Behavioural Brain Research, 2007, 176, 244-250.	2.2	37
28	Context Fear Learning in the Absence of the Hippocampus. Journal of Neuroscience, 2006, 26, 5484-5491.	3.6	304
29	Role of the Basolateral Amygdala in the Storage of Fear Memories across the Adult Lifetime of Rats. Journal of Neuroscience, 2004, 24, 3810-3815.	3.6	357
30	Consolidation of CS and US representations in associative fear conditioning. Hippocampus, 2004, 14, 557-569.	1.9	125
31	Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nature Neuroscience, 2003, 6, 51-58.	14.8	487
32	Analysis of Probabilistic Classification Learning in Patients With Parkinson's Disease Before and After Pallidotomy Surgery. Learning and Memory, 2003, 10, 226-236.	1.3	45
33	Memory Processes Governing Amphetamine-induced Psychomotor Sensitization. Neuropsychopharmacology, 2002, 26, 703-715.	5.4	131
34	The hippocampus and Pavlovian fear conditioning: Reply to Bast et al Hippocampus, 2002, 12, 561-565.	1.9	29
35	Weaving the Molecular and Cognitive Strands of Memory. Neuron, 2001, 32, 557-559.	8.1	8
36	Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sciences, 2001, 68, 2489-2493.	4.3	26

#	Article	IF	CITATIONS
37	Cholinergic modulation of Pavlovian fear conditioning: Effects of intrahippocampal scopolamine infusion. Hippocampus, 2001, 11, 371-376.	1.9	90
38	Hippocampus and contextual fear conditioning: Recent controversies and advances. Hippocampus, 2001, 11, 8-17.	1.9	578
39	Anxiety: at the intersection of genes and experience. Nature Neuroscience, 1999, 2, 780-782.	14.8	32
40	Scopolamine and Pavlovian Fear Conditioning in Rats Dose-Effect Analysis. Neuropsychopharmacology, 1999, 21, 731-744.	5.4	135
41	Temporally Graded Retrograde Amnesia of Contextual Fear after Hippocampal Damage in Rats: Within-Subjects Examination. Journal of Neuroscience, 1999, 19, 1106-1114.	3.6	572
42	Testicular hormones do not regulate sexually dimorphic Pavlovian fear conditioning or perforant-path long-term potentiation in adult male rats. Behavioural Brain Research, 1998, 92, 1-9.	2.2	45
43	The startled seahorse: is the hippocampus necessary for contextual fear conditioning?. Trends in Cognitive Sciences, 1998, 2, 39-42.	7.8	104
44	Sensitization to the psychomotor stimulant effects of amphetamine: Modulation by associative learning Behavioral Neuroscience, 1996, 110, 1397-1414.	1.2	273
45	Scopolamine Selectively Disrupts the Acquisition of Contextual Fear Conditioning in Rats. Neurobiology of Learning and Memory, 1995, 64, 191-194.	1.9	90