
Patricia Gorgojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5700697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Flux Thin Film Nanocomposite Membranes Based on Metal–Organic Frameworks for Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2013, 135, 15201-15208.	13.7	663
2	Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chemical Engineering Journal, 2015, 281, 669-677.	12.7	248
3	Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. Advanced Functional Materials, 2014, 24, 4729-4737.	14.9	235
4	High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chemical Engineering Journal, 2018, 334, 789-799.	12.7	183
5	Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous and Mesoporous Materials, 2018, 260, 45-53.	4.4	167
6	Beneath the surface: Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration. Journal of Membrane Science, 2013, 448, 102-113.	8.2	164
7	Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. Journal of Membrane Science, 2018, 554, 309-323.	8.2	144
8	Membrane cleaning and pretreatments in membrane distillation – a review. Chemical Engineering Journal, 2021, 422, 129696.	12.7	108
9	Air-gap membrane distillation as a one-step process for textile wastewater treatment. Chemical Engineering Journal, 2019, 360, 1330-1340.	12.7	103
10	Can emerging membrane-based desalination technologies replace reverse osmosis?. Desalination, 2021, 500, 114844.	8.2	101
11	PVDF membranes containing reduced graphene oxide: Effect of degree of reduction on membrane distillation performance. Desalination, 2019, 452, 196-207.	8.2	92
12	Polyamide thin film composite membranes on cross-linked polyimide supports: Improvement of RO performance via activating solvent. Desalination, 2014, 344, 181-188.	8.2	83
13	High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. Journal of Membrane Science, 2017, 529, 207-214.	8.2	79
14	Development of mixed matrix membranes based on zeolite Nu-6(2) for gas separation. Microporous and Mesoporous Materials, 2008, 115, 85-92.	4.4	75
15	Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Separation and Purification Technology, 2020, 230, 115836.	7.9	73
16	Impeded physical aging in PIM-1 membranes containing graphene-like fillers. Journal of Membrane Science, 2018, 563, 513-520.	8.2	65
17	Understanding the Topology of the Polymer of Intrinsic Microporosity PIM-1: Cyclics, Tadpoles, and Network Structures and Their Impact on Membrane Performance. Macromolecules, 2020, 53, 569-583.	4.8	59
18	Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. Journal of Membrane Science, 2017, 526, 437-449.	8.2	57

PATRICIA GORGOJO

#	Article	IF	CITATIONS
19	Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. Journal of Materials Chemistry A, 2019, 7, 6417-6430.	10.3	55
20	Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Technology, 2020, 247, 116995.	7.9	53
21	2D boron nitride nanosheets in PIM-1 membranes for CO2/CH4 separation. Journal of Membrane Science, 2021, 636, 119527.	8.2	52
22	Selective adsorption of ethane over ethylene on M(bdc)(ted)0.5 (M = Co, Cu, Ni, Zn) metal-organic frameworks (MOFs). Microporous and Mesoporous Materials, 2020, 292, 109724.	4.4	48
23	Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. Journal of Membrane Science, 2021, 623, 118902.	8.2	48
24	Green Solvent Selection Guide for Biobased Organic Acid Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 8958-8969.	6.7	48
25	Mitigation of Physical Aging with Mixed Matrix Membranes Based on Cross-Linked PIM-1 Fillers and PIM-1. ACS Applied Materials & amp; Interfaces, 2020, 12, 46756-46766.	8.0	47
26	Exfoliated Titanosilicate Material UZAR‣1 Obtained from JDF‣1. European Journal of Inorganic Chemistry, 2010, 2010, 159-163.	2.0	42
27	Mixed matrix membranes for gas separation with special nanoporous fillers. Desalination and Water Treatment, 2011, 27, 42-47.	1.0	40
28	Adsorptive separation of C2H6/C2H4 on metal-organic frameworks (MOFs) with pillared-layer structures. Separation and Purification Technology, 2020, 242, 116819.	7.9	40
29	Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. Journal of Membrane Science, 2018, 565, 390-401.	8.2	38
30	The use of carbon nanomaterials in membrane distillation membranes: a review. Frontiers of Chemical Science and Engineering, 2021, 15, 755-774.	4.4	37
31	Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity. Carbon, 2016, 102, 357-366.	10.3	34
32	Velocity variation effect in fixed bed columns: A case study of CO ₂ capture using porous solid adsorbents. AICHE Journal, 2018, 64, 2189-2197.	3.6	32
33	POSS-Functionalized Graphene Oxide/PVDF Electrospun Membranes for Complete Arsenic Removal Using Membrane Distillation. ACS Applied Polymer Materials, 2021, 3, 1854-1865.	4.4	32
34	Effect of graphene oxide in the formation of polymeric asymmetric membranes via phase inversion. Journal of Membrane Science, 2022, 641, 119924.	8.2	32
35	Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation. Microporous and Mesoporous Materials, 2020, 293, 109784.	4.4	30
36	Importance of small loops within PIM-1 topology on gas separation selectivity in thin film composite membranes. Journal of Materials Chemistry A, 2021, 9, 21807-21823.	10.3	30

PATRICIA GORGOJO

#	Article	IF	CITATIONS
37	Melt Compounding of Swollen Titanosilicate JDF-L1 with Polysulfone To Obtain Mixed Matrix Membranes for H2/CH4 Separation. Industrial & Engineering Chemistry Research, 2013, 52, 1901-1907.	3.7	28
38	PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Separation and Purification Technology, 2022, 298, 121447.	7.9	28
39	Separation of H ₂ and CO ₂ Containing Mixtures with Mixed Matrix Membranes Based on Layered Materials. Current Organic Chemistry, 2014, 18, 2351-2363.	1.6	24
40	Intrinsically Microporous Polymer Nanosheets for Highâ€Performance Gas Separation Membranes. Macromolecular Rapid Communications, 2020, 41, e1900572.	3.9	23
41	Exfoliated zeolite Nu-6(2) as filler for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 2012, 411-412, 146-152.	8.2	22
42	PIM-1/Holey Graphene Oxide Mixed Matrix Membranes for Gas Separation: Unveiling the Role of Holes. ACS Applied Materials & Interfaces, 2021, 13, 55517-55533.	8.0	22
43	Direct exfoliation of layered zeolite Nu-6(1). Microporous and Mesoporous Materials, 2011, 142, 122-129.	4.4	16
44	Immobilized graphene oxide-based membranes for improved pore wetting resistance in membrane distillation. Desalination, 2022, 537, 115898.	8.2	16
45	Preparation and Characterization of Zeolite Membranes. Membrane Science and Technology, 2008, 13, 135-175.	0.5	15
46	High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS Applied Materials & Interfaces, 2021, 13, 42635-42649.	8.0	15
47	Recovery of free volume in PIM-1 membranes through alcohol vapor treatment. Frontiers of Chemical Science and Engineering, 2021, 15, 872-881.	4.4	13
48	On the biocompatibility of graphene oxide towards vascular smooth muscle cells. Nanotechnology, 2021, 32, 055101.	2.6	12
49	Dispersal of pristine graphene for biological studies. RSC Advances, 2016, 6, 69551-69559.	3.6	8
50	Dynamics of Salt Precipitation on Graphene Oxide Membranes. Crystal Growth and Design, 2019, 19, 498-505.	3.0	8
51	Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?. Membranes, 2020, 10, 413.	3.0	7
52	Mixed Matrix Membranes from Nanostructured Materials for Gas Separation. Studies in Surface Science and Catalysis, 2008, , 653-656.	1.5	6
53	Thin film nanocomposite membranes of PIM-1 and graphene oxide/ZIF-8 nanohybrids for organophilic pervaporation. Separation and Purification Technology, 2022, 299, 121693.	7.9	6
54	Structural study on the Al distribution in zeolites Nu-6(1) and Nu-6(2). Microporous and Mesoporous Materials, 2011, 145, 211-216.	4.4	5

#	Article	IF	CITATIONS
55	Green supported liquid membranes: The permeability activity-based linear operation (PABLO) method. Chemical Engineering Journal, 2022, 446, 137253.	12.7	4
56	Membranes: Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes (Adv. Funct. Mater. 30/2014). Advanced Functional Materials, 2014, 24, 4728-4728.	14.9	3
57	Hybrid Organic-inorganic Membranes for Organic Solvent Nanofiltration. Procedia Engineering, 2012, 44, 96-99.	1.2	1