
Patricia A Martin-Deleon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5699592/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression and Secretion of Plasma Membrane Ca2+-ATPase 4a (PMCA4a) during Murine Estrus: Association with Oviductal Exosomes and Uptake in Sperm. PLoS ONE, 2013, 8, e80181.	2.5	131
2	Investigating the role of murine epididymosomes and uterosomes in GPlâ€linked protein transfer to sperm using SPAM1 as a model. Molecular Reproduction and Development, 2008, 75, 1627-1636.	2.0	77
3	Epididymal SPAM1 and its impact on sperm function. Molecular and Cellular Endocrinology, 2006, 250, 114-121.	3.2	76
4	Oviductosome-Sperm Membrane Interaction in Cargo Delivery. Journal of Biological Chemistry, 2015, 290, 17710-17723.	3.4	75
5	Mouse Spam1 (PH-20) Is a Multifunctional Protein: Evidence for Its Expression in the Female Reproductive Tract1. Biology of Reproduction, 2003, 69, 446-454.	2.7	52
6	Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian Journal of Andrology, 2015, 17, 720.	1.6	52
7	Biochemical maturation of Spam1 (PH-20) during epididymal transit of mouse sperm involves modifications ofN-linked oligosaccharides. Molecular Reproduction and Development, 1999, 52, 196-206.	2.0	51
8	JAM-A is present in mammalian spermatozoa where it is essential for normal motility. Developmental Biology, 2008, 313, 246-255.	2.0	49
9	Oviductal extracellular vesicles (oviductosomes, OVS) are conserved in humans: murine OVS play a pivotal role in sperm capacitation and fertility. Molecular Human Reproduction, 2018, 24, 143-157.	2.8	48
10	Prohibitin involvement in the generation of mitochondrial superoxide at complex I in human sperm. Journal of Cellular and Molecular Medicine, 2017, 21, 121-129.	3.6	45
11	Murine SPAM1 is secreted by the estrous uterus and oviduct in a form that can bind to sperm during capacitation: acquisition enhances hyaluronic acid-binding ability and cumulus dispersal efficiency. Reproduction, 2008, 135, 293-301.	2.6	42
12	Clusterin Facilitates Exchange of Glycosyl Phosphatidylinositol-Linked SPAM1 Between Reproductive Luminal Fluids and Mouse and Human Sperm Membranes1. Biology of Reproduction, 2009, 81, 562-570.	2.7	39
13	Epididymal SPAM1 Is a Marker for Sperm Maturation in the Mouse1. Biology of Reproduction, 2006, 74, 923-930.	2.7	38
14	Does Prohibitin Expression Regulate Sperm Mitochondrial Membrane Potential, Sperm Motility, and Male Fertility?. Antioxidants and Redox Signaling, 2012, 17, 513-519.	5.4	38
15	Mouse epididymal Spam1 (pH-20) is released in the luminal fluid with its lipid anchor. Journal of Andrology, 2003, 24, 51-8.	2.0	38
16	Chromosome Abnormalities in Rabbit Blastocysts Resulting From Spermatozoa Aged in the Male Tract. Fertility and Sterility, 1973, 24, 212-219.	1.0	35
17	Murine Oviductosomes (OVS) microRNA profiling during the estrous cycle: Delivery of OVS-borne microRNAs to sperm where miR-34c-5p localizes at the centrosome. Scientific Reports, 2018, 8, 16094.	3.3	35
18	Mouse Epididymal Spam1 (PH-20) Is Released In Vivo and In Vitro, and Spam1 Is Differentially Regulated in Testis and Epididymis1. Biology of Reproduction, 2001, 65, 1586-1593.	2.7	34

#	Article	IF	CITATIONS
19	SPAM1 (PH-20) protein and mRNA expression in the epididymides of humans and macaques: utilizing laser microdissection/RT-PCR. Reproductive Biology and Endocrinology, 2003, 1, 54.	3.3	33
20	Plasma Membrane Ca2+-ATPase 4 in Murine Epididymis: Secretion of Splice Variants in the Luminal Fluid and a Role in Sperm Maturation1. Biology of Reproduction, 2013, 89, 6.	2.7	33
21	Germ-cell hyaluronidases: their roles in sperm function. Journal of Developmental and Physical Disabilities, 2011, 34, e306-e318.	3.6	32
22	Sperm aging in the male and cytogenetic anomalies. An animal model. Human Genetics, 1982, 62, 70-77.	3.8	31
23	Anatase titanium dioxide nanoparticles in mice: evidence for induced structural and functional sperm defects after short-, but not long-, term exposure. Asian Journal of Andrology, 2015, 17, 261.	1.6	31
24	Plasma membrane Ca2+-ATPase 4: interaction with constitutive nitric oxide synthases in human sperm and prostasomes which carry Ca2+/CaM-dependent serine kinase. Molecular Human Reproduction, 2015, 21, 832-843.	2.8	30
25	Role of exosomes in the reproductive tract Oviductosomes mediate interactions of oviductal secretion with gametes early embryo. Frontiers in Bioscience - Landmark, 2016, 21, 1278-1285.	3.0	30
26	Sperm aging in the male after sexual rest: Contribution to chromosome anomalies. Gamete Research, 1985, 12, 151-163.	1.7	29
27	Spam1 (PH-20) mutations and sperm dysfunction in mice with the Rb(6.16) or Rb(6.15) translocation. Mammalian Genome, 2001, 12, 822-829.	2.2	29
28	The murine Spam1 gene: RNA expression pattern and lower steady-state levels associated with the Rb(6.16) translocation. Molecular Reproduction and Development, 1997, 46, 252-257.	2.0	28
29	Expression and secretion of rat SPAM1(2B1 or PH-20) in the epididymis: role of testicular lumicrine factors. Matrix Biology, 2004, 22, 653-661.	3.6	28
30	Spam1-associated transmission ratio distortion in mice: elucidating the mechanism. Reproductive Biology and Endocrinology, 2005, 3, 32.	3.3	28
31	CASK interacts with PMCA4b and JAMâ€A on the mouse sperm flagellum to regulate Ca ²⁺ homeostasis and motility. Journal of Cellular Physiology, 2012, 227, 3138-3150.	4.1	27
32	An Immortalized, Type-1 Astrocyte of Mescencephalic Origin Source of a Dopaminergic Neurotrophic Factor. Journal of Molecular Neuroscience, 1998, 11, 209-222.	2.3	25
33	Detection of extracellular vesicles in the mouse vaginal fluid: Their delivery of sperm proteins that stimulate capacitation and modulate fertility. Journal of Cellular Physiology, 2019, 234, 12745-12756.	4.1	24
34	PHB regulates meiotic recombination via JAK2-mediated histone modifications in spermatogenesis. Nucleic Acids Research, 2020, 48, 4780-4796.	14.5	23
35	The Mouse Spam1 maps to proximal Chromosome 6 and is a candidate for the sperm dysfunction in Rb(6.16)24Lub and Rb(6.15)IAId heterozygotes. Mammalian Genome, 1997, 8, 94-97.	2.2	22
36	Uterosomes Exosomal cargo during the estrus cycle and interaction with sperm. Frontiers in Bioscience - Scholar, 2016, 8, 115-122.	2.1	22

#	Article	IF	CITATIONS
37	Characterization of the genomic structure of the murineSpam1 gene and its promoter: Evidence for transcriptional regulation by a cAMP-responsive element. Molecular Reproduction and Development, 1999, 54, 8-16.	2.0	21
38	Sperm dysfunction in the Rb(6.16)- and Rb(6.15)-bearing mice revisited: Involvement ofHyalp1 andHyal5. Molecular Reproduction and Development, 2005, 72, 404-410.	2.0	21
39	Cytoplasmic localization during testicular biogenesis of the murine mRNA for Spam1 (PH-20), a protein involved in acrosomal exocytosis. Molecular Reproduction and Development, 2004, 69, 475-482.	2.0	20
40	Segregation products of male mice doubly heterozygous for the RB(6.16) and RB(16.17) translocations: Influence of sperm karyotype on fertilizing competence under varying mating frequencies. Gamete Research, 1989, 22, 93-107.	1.7	19
41	Spam1 (PH-20) Expression in the Extratesticular Duct and Accessory Organs of the Mouse: A Possible Role in Sperm Fluid Reabsorption1. Biology of Reproduction, 2004, 71, 1101-1107.	2.7	18
42	Hyaluronidase 2: A Novel Germ Cell Hyaluronidase with Epididymal Expression and Functional Roles in Mammalian Sperm1. Biology of Reproduction, 2014, 91, 109.	2.7	18
43	Plasma membrane calcium ATPase 4 (PMCA4) coâ€ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. Journal of Cellular Physiology, 2018, 233, 11-22.	4.1	18
44	Hyalp1 in Murine Sperm Function: Evidence for Unique and Overlapping Functions With Other Reproductive Hyaluronidases. Journal of Andrology, 2006, 28, 67-76.	2.0	17
45	Second meiotic nondisjunction is not increased in postovulatory aged murine oocytes fertilized in vitro. In Vitro Cellular & Developmental Biology, 1988, 24, 133-137.	1.0	16
46	Acidic hyaluronidase activity is present in mouse sperm and is reduced in the absence of SPAM1: Evidence for a role for hyaluronidase 3 in mouse and human sperm. Molecular Reproduction and Development, 2010, 77, 759-772.	2.0	16
47	Patterns of silver staining in cells of six-day blastocyst and kidney fibroblast of the domestic rabbit. Chromosoma, 1978, 67, 245-252.	2.2	13
48	Mapping of the 75-kDa Inositol Polyphosphate-5-Phosphatase (Inpp5b) to Distal Mouse Chromosome 4 and Its Exclusion as a Candidate Gene for dysgenetic lens. Genomics, 1995, 28, 280-285.	2.9	12
49	Cloning, Expression, and Chromosome Mapping of the Murine Hip/Rpl29 Gene. Genomics, 2000, 68, 210-219.	2.9	12
50	Analysis of the chromosome complement in outbred mouse sperm fertilizing in vitro. Gamete Research, 1989, 22, 71-81.	1.7	9
51	Localization of the raf-1 protooncogene on chromosome 6 of the mouse. Cancer Genetics and Cytogenetics, 1989, 40, 89-94.	1.0	9
52	Evidence for differential maturation of reciprocal sperm segregants in the murine RB(6.16) translocation heterozygote. Molecular Reproduction and Development, 1992, 32, 394-398.	2.0	9
53	Ultrastructural changes and asthenozoospermia in murine spermatozoa lacking the ribosomal protein L29/HIP gene. Asian Journal of Andrology, 2014, 16, 925.	1.6	7
54	Comparison of N banding and silver staining of human NORs. Human Genetics, 1980, 54, 217-219.	3.8	6

#	Article	IF	CITATIONS
55	In situ localization of murinec-Ki-ras-2 oncogene: Preliminary evidence for conservation of telomeric territory of oncogenes?. Somatic Cell and Molecular Genetics, 1988, 14, 205-210.	0.7	6
56	MurineSpam1 mRNA: Involvement of AU-rich elements in the 3′UTR and antisense RNA in its tight post-transcriptional regulation in spermatids. Molecular Reproduction and Development, 2006, 73, 247-255.	2.0	6
57	Expression of SPAM1 (PH-20) in the Murine Kidney Is Not Accompanied by Hyaluronidase Activity: Evidence for Potential Roles in Fluid and Water Reabsorption. Kidney and Blood Pressure Research, 2007, 30, 145-155.	2.0	6
58	Junctional adhesion molecule A: expression in the murine epididymal tract and accessory organs and acquisition by maturing sperm. Molecular Human Reproduction, 2017, 23, 132-140.	2.8	6
59	Prohibitin (PHB) interacts with AKT in mitochondria to coordinately modulate sperm motility. Asian Journal of Andrology, 2020, 22, 583.	1.6	6
60	Effectiveness of a walnut-enriched diet on murine sperm: involvement of reduced peroxidative damage. Heliyon, 2017, 3, e00250.	3.2	5
61	Support for random alignment of mitotic chromatids in associating nucleolus organizers. Human Genetics, 1982, 61, 27-30.	3.8	4
62	BrDU-Giemsa labeling studies of satellite associations in parents of children with trisomy 21 or 13. American Journal of Medical Genetics Part A, 1987, 26, 971-981.	2.4	3
63	Rabbit calcium-sensing receptor (CASR) gene: chromosome location and evidence for related genes. Cytogenetic and Genome Research, 1999, 86, 252-258.	1.1	2
64	The contribution of exosomes/microvesicles to the sperm proteome. Molecular Reproduction and Development, 2015, 82, 79-79.	2.0	2
65	Securing Our Place on the Map: Reprogramming the GPS in an Evolving Scientific Landscape Biology of Reproduction, 2008, 78, 130-130.	2.7	О