List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/569896/publications.pdf Version: 2024-02-01

		8755	3106
220	36,792	75	187
papers	citations	h-index	g-index
231	231	231	35374
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Robust induction of neutralizing antibodies against the SARSâ€CoVâ€2 Delta variant after homologous Spikevax or heterologous Vaxzevriaâ€Spikevax vaccination. European Journal of Immunology, 2022, 52, 356-359.	2.9	7
2	NK cell dysfunction in severe COVID-19: TGF-β-induced downregulation of integrin beta-2 restricts NK cell cytotoxicity. Signal Transduction and Targeted Therapy, 2022, 7, 32.	17.1	4
3	Challenges of CRISPR-Based Gene Editing in Primary T Cells. International Journal of Molecular Sciences, 2022, 23, 1689.	4.1	10
4	Longitudinal Tracking of Immune Responses in COVID-19 Convalescents Reveals Absence of Neutralization Activity Against Omicron and Staggered Impairment to Other SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2022, 13, 863039.	4.8	10
5	Imaging dendritic cell functions*. Immunological Reviews, 2022, 306, 137-163.	6.0	22
6	Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nature Communications, 2022, 13, 2022.	12.8	16
7	Differential retention of lymph-borne CD8 memory T cell subsets in the subcapsular sinus of resting and inflamed lymph nodes. Cellular and Molecular Immunology, 2021, 18, 1317-1319.	10.5	2
8	Low serum neutralizing anti-SARS-CoV-2 S antibody levels in mildly affected COVID-19 convalescent patients revealed by two different detection methods. Cellular and Molecular Immunology, 2021, 18, 936-944.	10.5	98
9	Efficient IL-2R signaling differentially affects the stability, function, and composition of the regulatory T-cell pool. Cellular and Molecular Immunology, 2021, 18, 398-414.	10.5	21
10	A fetal wave of human type 3 effector γÎ′ cells with restricted TCR diversity persists into adulthood. Science Immunology, 2021, 6, .	11.9	52
11	Lymph-Derived Neutrophils Primarily Locate to the Subcapsular and Medullary Sinuses in Resting and Inflamed Lymph Nodes. Cells, 2021, 10, 1486.	4.1	11
12	MyD88 signaling by neurons induces chemokines that recruit protective leukocytes to the virus-infected CNS. Science Immunology, 2021, 6, .	11.9	12
13	Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	64
14	Fucosylated lipid nanocarriers loaded with antibiotics efficiently inhibit mycobacterial propagation in human myeloid cells. Journal of Controlled Release, 2021, 334, 201-212.	9.9	10
15	Targeted delivery of regulatory macrophages to lymph nodes interferes with TÂcell priming by preventing the formation of stable immune synapses. Cell Reports, 2021, 35, 109273.	6.4	4
16	Distribution of major lymphocyte subsets and memory T-cell subpopulations in healthy adults employing GLP-conforming multicolor flow cytometry. Leukemia, 2021, 35, 3021-3025.	7.2	10
17	Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nature Medicine, 2021, 27, 1525-1529.	30.7	363
18	Expression of ACKR4 demarcates the "peri-marginal sinus,―a specialized vascular compartment of the splenic red pulp. Cell Reports, 2021, 36, 109346.	6.4	13

#	Article	IF	CITATIONS
19	Neutralization of the SARS-CoV-2 Delta variant after heterologous and homologous BNT162b2 or ChAdOx1 nCoV-19 vaccination. Cellular and Molecular Immunology, 2021, 18, 2455-2456.	10.5	35
20	Case Report: Convalescent Plasma Therapy Induced Anti-SARS-CoV-2 T Cell Expansion, NK Cell Maturation and Virus Clearance in a B Cell Deficient Patient After CD19 CAR T Cell Therapy. Frontiers in Immunology, 2021, 12, 721738.	4.8	5
21	Clonal expansion of CD8+ T cells reflects graft-versus-leukemia activity and precedes durable remission following DLI. Blood Advances, 2021, 5, 4485-4499.	5.2	10
22	Generation of hiPSC-derived low threshold mechanoreceptors containing axonal termini resembling bulbous sensory nerve endings and expressing Piezo1 and Piezo2. Stem Cell Research, 2021, 56, 102535.	0.7	4
23	Evaluating registrations of serial sections with distortions of the ground truths. IEEE Access, 2021, , 1-1.	4.2	1
24	Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Frontiers in Immunology, 2021, 12, 772240.	4.8	33
25	Lyz2-Cre-Mediated Genetic Deletion of Septin7 Reveals a Role of Septins in Macrophage Cytokinesis and Kras-Driven Tumorigenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 795798.	3.7	3
26	B cell hyperactivation in an <i>Ackr4</i> -deficient mouse strain is not caused by lack of ACKR4 expression. Journal of Leukocyte Biology, 2020, 107, 1155-1166.	3.3	8
27	Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine, 2020, 57, 102885.	6.1	109
28	Strategic Anti-SARS-CoV-2 Serology Testing in a Low Prevalence Setting: The COVID-19 Contact (CoCo) Study in Healthcare Professionals. Infectious Diseases and Therapy, 2020, 9, 837-849.	4.0	34
29	Combating COVID-19: MVA Vector Vaccines Applied to the Respiratory Tract as Promising Approach Toward Protective Immunity in the Lung. Frontiers in Immunology, 2020, 11, 1959.	4.8	14
30	S100A8 and S100A9 Are Important for Postnatal Development of Gut Microbiota and Immune System in Mice and Infants. Gastroenterology, 2020, 159, 2130-2145.e5.	1.3	64
31	Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nature Communications, 2020, 11, 1114.	12.8	41
32	Donor-derived IL-17A and IL-17F deficiency triggers Th1 allo-responses and increases gut leakage during acute GVHD. PLoS ONE, 2020, 15, e0231222.	2.5	0
33	The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cellular and Molecular Immunology, 2019, 16, 791-799.	10.5	42
34	Constitutive TNFâ€Î± signaling in neonates is essential for the development of tissueâ€resident leukocyte profiles at barrier sites. FASEB Journal, 2019, 33, 10633-10647.	0.5	7
35	Age-Related Cliosis Promotes Central Nervous System Lymphoma through CCL19-Mediated Tumor Cell Retention. Cancer Cell, 2019, 36, 250-267.e9.	16.8	25
36	Mutual interplay between IL-17–producing γÎ⊤ cells and microbiota orchestrates oral mucosal homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2652-2661.	7.1	72

#	Article	IF	CITATIONS
37	IL-1β Promotes Staphylococcus aureus Biofilms on Implants in vivo. Frontiers in Immunology, 2019, 10, 1082.	4.8	23
38	Focusing of the regulatory T-cell repertoire after allogeneic stem cell transplantation indicates protection from graft- <i>versus</i> -host disease. Haematologica, 2019, 104, e577-e580.	3.5	8
39	Chemokines and other mediators in the development and functional organization of lymph nodes. Immunological Reviews, 2019, 289, 62-83.	6.0	24
40	Manifold Roles of CCR7 and Its Ligands in the Induction and Maintenance of Bronchus-Associated Lymphoid Tissue. Cell Reports, 2018, 23, 783-795.	6.4	30
41	Blocking the ART2.2/P2X7â€system is essential to avoid a detrimental bias in functional CD4 TÂcell studies. European Journal of Immunology, 2018, 48, 1078-1081.	2.9	14
42	Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice. Cellular and Molecular Immunology, 2018, 15, 875-887.	10.5	24
43	Hematopoietic stem cell gene therapy for IFNÎ ³ R1 deficiency protects mice from mycobacterial infections. Blood, 2018, 131, 533-545.	1.4	19
44	Genetic models reveal origin, persistence and non-redundant functions of IL-17–producing γδT cells. Journal of Experimental Medicine, 2018, 215, 3006-3018.	8.5	103
45	The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.	12.8	32
46	CRISPR/Cas9 Immunoengineering of Hoxb8-Immortalized Progenitor Cells for Revealing CCR7-Mediated Dendritic Cell Signaling and Migration Mechanisms in vivo. Frontiers in Immunology, 2018, 9, 1949.	4.8	21
47	Control of primary mouse cytomegalovirus infection in lung nodular inflammatory foci by cooperation of interferon-gamma expressing CD4 and CD8 T cells. PLoS Pathogens, 2018, 14, e1007252.	4.7	17
48	Dendritic cells, T cells and lymphatics: dialogues in migration and beyond. Current Opinion in Immunology, 2018, 53, 173-179.	5.5	44
49	CRISPR/Cas9 Genome Editing Using Goldâ€Nanoparticleâ€Mediated Laserporation. Advanced Biology, 2018, 2, 1700184.	3.0	16
50	Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Frontiers in Immunology, 2018, 9, 714.	4.8	23
51	Induction and Analysis of Bronchus-Associated Lymphoid Tissue. Methods in Molecular Biology, 2017, 1559, 185-198.	0.9	12
52	Human Î ³ δT cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nature Immunology, 2017, 18, 393-401.	14.5	208
53	Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends in Immunology, 2017, 38, 432-443.	6.8	217
54	Impact of CCR7 on T-Cell Response and Susceptibility to Yersinia pseudotuberculosis Infection. Journal of Infectious Diseases, 2017, 216, 752-760.	4.0	5

#	Article	IF	CITATIONS
55	Repulsive behavior in germinal centers. Science, 2017, 356, 703-704.	12.6	2
56	T cell specific Cxcr5Âdeficiency prevents rheumatoid arthritis. Scientific Reports, 2017, 7, 8933.	3.3	53
57	Dendritic cell migration in health and disease. Nature Reviews Immunology, 2017, 17, 30-48.	22.7	581
58	Cardiomyocytes display low mitochondrial priming and are highly resistant toward cytotoxic T ell killing. European Journal of Immunology, 2016, 46, 1415-1426.	2.9	6
59	Interleukinâ€23–Dependent γ/δT Cells Produce Interleukinâ€17 and Accumulate in the Enthesis, Aortic Valve, and Ciliary Body in Mice. Arthritis and Rheumatology, 2016, 68, 2476-2486.	5.6	170
60	Plasmacytoid dendritic cells induce tolerance predominantly by cargoing antigen to lymph nodes. European Journal of Immunology, 2016, 46, 2659-2668.	2.9	27
61	Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nature Communications, 2016, 7, 13116.	12.8	82
62	CD155/CD226â€interaction impacts on the generation of innate CD8 ⁺ thymocytes by regulating iNKTâ€cell differentiation. European Journal of Immunology, 2016, 46, 993-1003.	2.9	18
63	Active Shaping of Chemokine Gradients by Atypical Chemokine Receptors. Methods in Enzymology, 2016, 570, 293-308.	1.0	1
64	A 4-midable Connection: CCR7 Tetramers Link GPCR to Src Kinase Signaling. Immunity, 2016, 44, 9-11.	14.3	1
65	Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science, 2016, 351, 186-190.	12.6	123
66	miR-181a Expression in Donor T Cells Modulates Graft-versus-Host Disease after Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2016, 196, 3927-3934.	0.8	15
67	InÂVivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity. Immunity, 2016, 44, 233-245.	14.3	199
68	Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annual Review of Immunology, 2016, 34, 203-242.	21.8	167
69	miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovascular Research, 2016, 110, 215-226.	3.8	61
70	CCR7 and IRF4-dependent dendritic cells regulate lymphatic collecting vessel permeability. Journal of Clinical Investigation, 2016, 126, 1581-1591.	8.2	72
71	Pillars Article: CCR7 Coordinates the Primary Immune Response by Establishing Functional Microenvironments in Secondary Lymphoid Organs. Cell. 1999. 99: 23-33. Journal of Immunology, 2016, 196, 5-15.	0.8	3
72	Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation during the postnatal period. Nature Communications, 2015, 6, 7725.	12.8	58

#	Article	IF	CITATIONS
73	Differential Effects of Gut-Homing Molecules CC Chemokine Receptor 9 and Integrin-β7 during Acute Graft-versus-Host Disease of the Liver. Biology of Blood and Marrow Transplantation, 2015, 21, 2069-2078.	2.0	5
74	Multicongenic fate mapping quantification of dynamics of thymus colonization. Journal of Experimental Medicine, 2015, 212, 1589-1601.	8.5	24
75	Helicobacter hepaticus Induces an Inflammatory Response in Primary Human Hepatocytes. PLoS ONE, 2014, 9, e99713.	2.5	16
76	Genetic Deletion of SEPT7 Reveals a Cell Type-Specific Role of Septins in Microtubule Destabilization for the Completion of Cytokinesis. PLoS Genetics, 2014, 10, e1004558.	3.5	90
77	CCR7â€mediated migration in the thymus controls γî´Tâ€cell development. European Journal of Immunology, 2014, 44, 1320-1329.	2.9	21
78	To the Editor <scp>TIGIT</scp> versus <scp>CD</scp> 226: Hegemony or coexistence?. European Journal of Immunology, 2014, 44, 307-308.	2.9	9
79	IL-17–induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. Journal of Experimental Medicine, 2014, 211, 643-651.	8.5	159
80	The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nature Immunology, 2014, 15, 623-630.	14.5	235
81	Orchestrating the Organizers: Lymphotoxin-β Receptor Conducts Fibroblastic Reticular Cell Maturation. Immunity, 2013, 38, 851-853.	14.3	2
82	CD226 interaction with CD155 impacts on retention and negative selection of CD8 positive thymocytes as well as T cell differentiation to follicular helper cells in Peyer's Patches. Immunobiology, 2013, 218, 152-158.	1.9	11
83	Nodular Inflammatory Foci Are Sites of T Cell Priming and Control of Murine Cytomegalovirus Infection in the Neonatal Lung. PLoS Pathogens, 2013, 9, e1003828.	4.7	40
84	Emerging aspects of leukocyte migration. European Journal of Immunology, 2013, 43, 1404-1406.	2.9	10
85	Differential Postselection Proliferation Dynamics of αβ T Cells, Foxp3+ Regulatory T Cells, and Invariant NKT Cells Monitored by Genetic Pulse Labeling. Journal of Immunology, 2013, 191, 2384-2392.	0.8	22
86	Induction of BALT in the absence of IL-17. Nature Immunology, 2012, 13, 1-1.	14.5	34
87	IFN-γ Production by Allogeneic Foxp3+ Regulatory T Cells Is Essential for Preventing Experimental Graft-versus-Host Disease. Journal of Immunology, 2012, 189, 2890-2896.	0.8	110
88	Adaptive Immune Response to Model Antigens Is Impaired in Murine Leukocyte-Adhesion Deficiency-1 Revealing Elevated Activation ThresholdsIn Vivo. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	5
89	Neonatal lymph node stromal cells drive myelodendritic lineage cells into a distinct population of CX3CR1+CD11b+F4/80+ regulatory macrophages in mice. Blood, 2012, 119, 3975-3986.	1.4	11
90	CCR7-mediated LFA-1 functions in T cells are regulated by 2 independent ADAP/SKAP55 modules. Blood, 2012, 119, 777-785.	1.4	74

#	Article	IF	CITATIONS
91	Development of Interleukin-17-Producing Î ³ δT Cells Is Restricted to a Functional Embryonic Wave. Immunity, 2012, 37, 48-59.	14.3	309
92	Lymph node homing of T cells and dendritic cells via afferent lymphatics. Trends in Immunology, 2012, 33, 271-280.	6.8	201
93	Multifaceted activities of CCR7 regulate Tâ€cell homeostasis in health and disease. European Journal of Immunology, 2012, 42, 1949-1955.	2.9	57
94	HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nature Reviews Immunology, 2012, 12, 762-773.	22.7	567
95	Deficient CCR7 signaling promotes T _H 2 polarization and Bâ€cell activation in vivo. European Journal of Immunology, 2012, 42, 48-57.	2.9	21
96	Shift of Graft-Versus-Host-Disease Target Organ Tropism by Dietary Vitamin A. PLoS ONE, 2012, 7, e38252.	2.5	21
97	Single cell detection of latent cytomegalovirus reactivation in host tissue. Journal of General Virology, 2011, 92, 1279-1291.	2.9	50
98	Lymph Node T Cell Homeostasis Relies on Steady State Homing of Dendritic Cells. Immunity, 2011, 35, 945-957.	14.3	96
99	Tolerance induction towards cardiac allografts under costimulation blockade is impaired in CCR7â€deficient animals but can be restored by adoptive transfer of syngeneic plasmacytoid dendritic cells. European Journal of Immunology, 2011, 41, 611-623.	2.9	21
100	High TCR diversity ensures optimal function andhomeostasis of Foxp3 ⁺ regulatory Tcells. European Journal of Immunology, 2011, 41, 3101-3113.	2.9	82
101	Intestinal Tolerance Requires Gut Homing and Expansion of FoxP3+ Regulatory T Cells in the Lamina Propria. Immunity, 2011, 34, 237-246.	14.3	757
102	Genetic Labeling Reveals Altered Turnover and Stability of Innate Lymphocytes in Latent Mouse Cytomegalovirus Infection. Journal of Immunology, 2011, 186, 2918-2925.	0.8	6
103	CCR7 Essentially Contributes to the Homing of Plasmacytoid Dendritic Cells to Lymph Nodes under Steady-State As Well As Inflammatory Conditions. Journal of Immunology, 2011, 186, 3364-3372.	0.8	129
104	Absence of CD155 aggravates acute graft-versus-host disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E32-3; author reply E34.	7.1	20
105	Afferent lymph–derived T cells and DCs use different chemokine receptor CCR7–dependent routes for entry into the lymph node and intranodal migration. Nature Immunology, 2011, 12, 879-887.	14.5	278
106	Intranodal Interaction with Dendritic Cells Dynamically Regulates Surface Expression of the Co-stimulatory Receptor CD226 Protein on Murine T Cells. Journal of Biological Chemistry, 2011, 286, 39153-39163.	3.4	22
107	Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. Journal of Clinical Investigation, 2011, 121, 3051-3061.	8.2	127
108	Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in αβ and γδT Cells. PLoS ONE, 2011, 6, e20171.	2.5	53

#	Article	IF	CITATIONS
109	CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood, 2010, 115, 1906-1912.	1.4	130
110	Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial γδT cells is functional <i>in vivo</i> . European Journal of Immunology, 2010, 40, 3378-3388.	2.9	25
111	Immobilized Chemokine Fields and Soluble Chemokine Gradients Cooperatively Shape Migration Patterns of Dendritic Cells. Immunity, 2010, 32, 703-713.	14.3	282
112	Development and functional specialization of CD103 ⁺ dendritic cells. Immunological Reviews, 2010, 234, 268-281.	6.0	241
113	ADAP deficiency combined with costimulation blockade synergistically protects intestinal allografts. Transplant International, 2010, 23, 71-79.	1.6	9
114	CD155 Is Involved in Negative Selection and Is Required To Retain Terminally Maturing CD8 T Cells in Thymus. Journal of Immunology, 2010, 184, 1681-1689.	0.8	14
115	T Cell–Dendritic Cell Interaction Dynamics during the Induction of Respiratory Tolerance and Immunity. Journal of Immunology, 2010, 184, 1317-1327.	0.8	27
116	The Origin and Maturity of Dendritic Cells Determine the Pattern of Sphingosine 1-Phosphate Receptors Expressed and Required for Efficient Migration. Journal of Immunology, 2010, 185, 4072-4081.	0.8	60
117	Intra- and Intercompartmental Movement of Î ³ δT Cells: Intestinal Intraepithelial and Peripheral Î ³ δT Cells Represent Exclusive Nonoverlapping Populations with Distinct Migration Characteristics. Journal of Immunology, 2010, 185, 5160-5168.	0.8	82
118	Chemokine Receptor 7 Knockout Attenuates Atherosclerotic Plaque Development. Circulation, 2010, 122, 1621-1628.	1.6	73
119	Lymph Node Stromal Cells Support Dendritic Cell-Induced Gut-Homing of T Cells. Journal of Immunology, 2009, 183, 6395-6402.	0.8	128
120	Common γ-Chain-Dependent Signals Confer Selective Survival of Eosinophils in the Murine Small Intestine. Journal of Immunology, 2009, 183, 5600-5607.	0.8	104
121	Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. Journal of Experimental Medicine, 2009, 206, 2593-2601.	8.5	251
122	Chemokine Receptor CXCR5 Supports Solitary Intestinal Lymphoid Tissue Formation, B Cell Homing, and Induction of Intestinal IgA Responses. Journal of Immunology, 2009, 182, 2610-2619.	0.8	66
123	Chemokine Receptor CCR7 Contributes to a Rapid and Efficient Clearance of Lytic Murine γ-Herpes Virus 68 from the Lung, Whereas Bronchus-Associated Lymphoid Tissue Harbors Virus during Latency. Journal of Immunology, 2009, 182, 6861-6869.	0.8	30
124	CCR9 and inflammatory bowel disease. Expert Opinion on Therapeutic Targets, 2009, 13, 297-306.	3.4	38
125	Mesenteric Lymph Nodes Confine Dendritic Cell-Mediated Dissemination of <i>Salmonella enterica </i> Serovar Typhimurium and Limit Systemic Disease in Mice. Infection and Immunity, 2009, 77, 3170-3180.	2.2	97
126	<i>In vivo</i> application of mAb directed against the γδ TCR does not deplete but generates "invisibleâ€Î3δ T cells. European Journal of Immunology, 2009, 39, 372-379.	2.9	86

#	Article	IF	CITATIONS
127	Antigenâ€dependent rescue of noseâ€associated lymphoid tissue (NALT) development independent of LTβR and CXCR5 signaling. European Journal of Immunology, 2009, 39, 2765-2778.	2.9	23
128	Alloantigenâ€specific <i>de novoâ€</i> induced Foxp3 ⁺ Treg revert <i>in vivo</i> and do not protect from experimental GVHD. European Journal of Immunology, 2009, 39, 3091-3096.	2.9	127
129	Abundance of follicular helper T cells in Peyer's patches is modulated by CD155. European Journal of Immunology, 2009, 39, 3160-3170.	2.9	30
130	CCR6 and NK1.1 distinguish between ILâ€17A and IFNâ€Î³â€producing γδ effector T cells. European Journal of Immunology, 2009, 39, 3488-3497.	2.9	251
131	Unaltered levels of transplant arteriosclerosis in the absence of the B cell homing chemokine receptor CXCR5. Transplant Immunology, 2009, 20, 218-223.	1.2	1
132	T Cell Migration Dynamics Within Lymph Nodes During Steady State: An Overview of Extracellular and Intracellular Factors Influencing the Basal Intranodal T Cell Motility. Current Topics in Microbiology and Immunology, 2009, 334, 71-105.	1.1	18
133	Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood, 2009, 113, 5801-5810.	1.4	57
134	lκBα is required for marginal zone B cell lineage development. European Journal of Immunology, 2008, 38, 2096-2105.	2.9	3
135	Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature, 2008, 453, 51-55.	27.8	1,227
136	Factors governing the intranodal migration behavior of T lymphocytes. Immunological Reviews, 2008, 221, 44-63.	6.0	17
137	CCR7 and its ligands: balancing immunity and tolerance. Nature Reviews Immunology, 2008, 8, 362-371.	22.7	1,131
138	Homeostatic chemokines in development, plasticity, and functional organization of the intestinal immune system. Seminars in Immunology, 2008, 20, 171-180.	5.6	23
139	Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. Journal of Experimental Medicine, 2008, 205, 2483-2490.	8.5	286
140	Differential Molecular and Anatomical Basis for B Cell Migration into the Peritoneal Cavity and Omental Milky Spots. Journal of Immunology, 2008, 180, 2196-2203.	0.8	57
141	CX3CR1+c-kit+ Bone Marrow Cells Give Rise to CD103+ and CD103â^' Dendritic Cells with Distinct Functional Properties. Journal of Immunology, 2008, 181, 6178-6188.	0.8	41
142	Increased Transplant Arteriosclerosis in the Absence of CCR7 is Associated With Reduced Expression of Foxp3. Transplantation, 2008, 86, 590-600.	1.0	7
143	Dynamics and Function of Solitary Intestinal Lymphoid Tissue. Critical Reviews in Immunology, 2008, 28, 1-13.	0.5	22
144	Dendritic Cell-Independent B Cell Activation During Acute Virus Infection: A Role for Early CCR7-Driven B-T Helper Cell Collaboration. Journal of Immunology, 2007, 178, 1468-1476.	0.8	40

#	Article	IF	CITATIONS
145	Sphingosine-1 Phosphate Signaling Regulates Positioning of Dendritic Cells within the Spleen. Journal of Immunology, 2007, 179, 5855-5863.	0.8	54
146	CCR7 Signaling Inhibits T Cell Proliferation. Journal of Immunology, 2007, 179, 6485-6493.	0.8	40
147	The impact of cell-bound antigen transport on mucosal tolerance induction. Journal of Leukocyte Biology, 2007, 82, 795-800.	3.3	33
148	CD103â^' and CD103+ Bronchial Lymph Node Dendritic Cells Are Specialized in Presenting and Cross-Presenting Innocuous Antigen to CD4+ and CD8+ T Cells. Journal of Immunology, 2007, 178, 6861-6866.	0.8	266
149	CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. Journal of Experimental Medicine, 2007, 204, 489-495.	8.5	306
150	CCR9 is a homing receptor for plasmacytoid dendritic cells to the small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6347-6352.	7.1	213
151	Solitary Intestinal Lymphoid Tissue Provides a Productive Port of Entry for <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2007, 75, 1577-1585.	2.2	48
152	Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue. Journal of Experimental Medicine, 2007, 204, 723-734.	8.5	110
153	Impaired responsiveness to T-cell receptor stimulation and defective negative selection of thymocytes in CCR7-deficient mice. Blood, 2007, 110, 4351-4359.	1.4	61
154	Inactivation of T-Cell Receptor-Mediated Integrin Activation Prolongs Allograft Survival in ADAP-Deficient Mice. Transplantation, 2007, 84, 400-406.	1.0	13
155	A key role for CCR7 in establishing central and peripheral tolerance. Trends in Immunology, 2007, 28, 274-280.	6.8	65
156	The peritoneal micromilieu commits B cells to home to body cavities and the small intestine. Blood, 2007, 109, 4627-4634.	1.4	63
157	Generalized multi-organ autoimmunity in CCR7-deficient mice. European Journal of Immunology, 2007, 37, 613-622.	2.9	105
158	The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. European Journal of Immunology, 2007, 37, 2214-2225.	2.9	69
159	Genetic variants of chemokine receptor CCR7 in patients with systemic lupus erythematosus, Sjogren's syndrome and systemic sclerosis. BMC Genetics, 2007, 8, 33.	2.7	9
160	The thymus is required for the ability of FTY720 to prolong skin allograft survival across different histocompatibility MHC barriers. Transplant International, 2007, 20, 895-903.	1.6	9
161	Chemokines and Their Receptors: Biochemical, Structural and Biological Properties. , 2006, , 36-67.		1
162	Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood, 2006, 108, 3253-3261.	1.4	248

#	Article	IF	CITATIONS
163	Trafficking on serpentines: molecular insight on how maturating T cells find their winding paths in the thymus. Immunological Reviews, 2006, 209, 115-128.	6.0	33
164	Induction of Tolerance to Innocuous Inhaled Antigen Relies on a CCR7-Dependent Dendritic Cell-Mediated Antigen Transport to the Bronchial Lymph Node. Journal of Immunology, 2006, 177, 7346-7354.	0.8	194
165	Enhanced FTY720-Mediated Lymphocyte Homing Requires Gαi Signaling and Depends on β2 and β7 Integrin. Journal of Immunology, 2006, 176, 1474-1480.	0.8	20
166	Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. Journal of Experimental Medicine, 2006, 203, 519-527.	8.5	603
167	Adaptation of Solitary Intestinal Lymphoid Tissue in Response to Microbiota and Chemokine Receptor CCR7 Signaling. Journal of Immunology, 2006, 177, 6824-6832.	0.8	146
168	CXCR5/CXCL13 Interaction Is Important for Double-Negative Regulatory T Cell Homing to Cardiac Allografts. Journal of Immunology, 2006, 176, 5276-5283.	0.8	33
169	Protection of Mouse Small Bowel Allografts by FTY720 and Costimulation Blockade. Transplantation, 2005, 79, 1703-1710.	1.0	13
170	Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood, 2005, 106, 1924-1931.	1.4	263
171	Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. European Journal of Immunology, 2005, 35, 98-107.	2.9	162
172	Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: important roles for soluble factors and tissue microenvironments. European Journal of Immunology, 2005, 35, 1056-1065.	2.9	149
173	Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. International Journal of Cancer, 2005, 116, 726-733.	5.1	145
174	Micronodular thymoma: an epithelial tumour with abnormal chemokine expression setting the stage for lymphoma development. Journal of Pathology, 2005, 207, 72-82.	4.5	55
175	Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. Journal of Experimental Medicine, 2005, 202, 1063-1073.	8.5	635
176	Direct Activation of Human Endothelial Cells by Plasmodium falciparum-Infected Erythrocytes. Infection and Immunity, 2005, 73, 3271-3277.	2.2	53
177	CXCR5-Dependent Seeding of Follicular Niches by B and Th Cells Augments Antiviral B Cell Responses. Journal of Immunology, 2005, 175, 7109-7116.	0.8	68
178	Sphingosine-1-Phosphate Mediates Migration of Mature Dendritic Cells. Journal of Immunology, 2005, 175, 2960-2967.	0.8	171
179	Cutting Edge: Egress of Newly Generated Plasma Cells from Peripheral Lymph Nodes Depends on β2 Integrin. Journal of Immunology, 2005, 174, 7492-7495.	0.8	37
180	Control of intestinal allograft rejection by FTY720 and costimulation blockade. Transplantation Proceedings, 2005, 37, 114-115.	0.6	4

#	Article	IF	CITATIONS
181	Requirements for Follicular Exclusion and Competitive Elimination of Autoantigen-Binding B Cells. Journal of Immunology, 2004, 172, 4700-4708.	0.8	80
182	Chemokine Receptor CCR9 Contributes to the Localization of Plasma Cells to the Small Intestine. Journal of Experimental Medicine, 2004, 199, 411-416.	8.5	208
183	Impact of CCR7 on Priming and Distribution of Antiviral Effector and Memory CTL. Journal of Immunology, 2004, 173, 6684-6693.	0.8	87
184	Ectopic expression of CCL19 impairs alloimmune response in mice. Immunology, 2004, 112, 301-309.	4.4	18
185	Elucidating the functional anatomy of secondary lymphoid organs. Current Opinion in Immunology, 2004, 16, 394-399.	5.5	14
186	Thymic T Cell Development and Progenitor Localization Depend on CCR7. Journal of Experimental Medicine, 2004, 200, 481-491.	8.5	182
187	CCR7 Governs Skin Dendritic Cell Migration under Inflammatory and Steady-State Conditions. Immunity, 2004, 21, 279-288.	14.3	873
188	PROLONGATION OF ALLOGRAFT SURVIVAL IN CCR7-DEFICIENT MICE. Transplantation, 2004, 77, 1809-1814.	1.0	38
189	Chemokines as organizers of primary and secondary lymphoid organs. Seminars in Immunology, 2003, 15, 249-255.	5.6	33
190	Characterization and identification of Tage4 as the murine orthologue of human poliovirus receptor/CD155. Biochemical and Biophysical Research Communications, 2003, 312, 1364-1371.	2.1	42
191	Cooperating Mechanisms of CXCR5 and CCR7 in Development and Organization of Secondary Lymphoid Organs. Journal of Experimental Medicine, 2003, 197, 1199-1204.	8.5	167
192	Chemokine Requirements for B Cell Entry to Lymph Nodes and Peyer's Patches. Journal of Experimental Medicine, 2002, 196, 65-75.	8.5	479
193	Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood, 2002, 99, 3398-3403.	1.4	377
194	Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood, 2002, 100, 1354-1361.	1.4	451
195	Peptide-specific CD8+ T-cell evolutionin vivo: Response to peptide vaccination with Melan-A/MART-1. International Journal of Cancer, 2002, 98, 376-388.	5.1	56
196	Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature, 2002, 416, 94-99.	27.8	506
197	Involvement of inhibitory NKRs in the survival of a subset of memory-phenotype CD8+ T cells. Nature Immunology, 2001, 2, 430-435.	14.5	153
198	Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature, 2001, 410, 106-111.	27.8	910

#	Article	IF	CITATIONS
199	A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 2000, 406, 309-314.	27.8	1,103
200	Follicular B Helper T Cells Express Cxc Chemokine Receptor 5, Localize to B Cell Follicles, and Support Immunoglobulin Production. Journal of Experimental Medicine, 2000, 192, 1545-1552.	8.5	1,284
201	CCR6 Mediates Dendritic Cell Localization, Lymphocyte Homeostasis, and Immune Responses in Mucosal Tissue. Immunity, 2000, 12, 495-503.	14.3	478
202	CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. European Journal of Immunology, 2000, 30, 560-567.	2.9	91
203	Compromised Ox40 Function in Cd28-Deficient Mice Is Linked with Failure to Develop Cxc Chemokine Receptor 5–Positive Cd4 Cells and Germinal Centers. Journal of Experimental Medicine, 1999, 190, 1115-1122.	8.5	247
204	Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999, 401, 708-712.	27.8	5,333
205	Distinct patterns and kinetics of chemokine production regulate dendritic cell function. European Journal of Immunology, 1999, 29, 1617-1625.	2.9	588
206	Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. European Journal of Immunology, 1999, 29, 2037-2045.	2.9	348
207	CCR7 Coordinates the Primary Immune Response by Establishing Functional Microenvironments in Secondary Lymphoid Organs. Cell, 1999, 99, 23-33.	28.9	2,122
208	The murine chemokine receptor CXCR4 is tightly regulated during T cell development and activation. Journal of Leukocyte Biology, 1999, 66, 996-1004.	3.3	46
209	CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature, 1998, 391, 591-594.	27.8	1,914
210	MAGE-11 protein is highly conserved in higher organisms and located predominantly in the nucleus. , 1998, 75, 762-766.		31
211	Downstream Activation of a TATA-less Promoter by Oct-2, Bob1, and NF-ήB Directs Expression of the Homing Receptor BLR1 to Mature B Cells. Journal of Biological Chemistry, 1998, 273, 28831-28836.	3.4	63
212	Identification of Pirin, a Novel Highly Conserved Nuclear Protein. Journal of Biological Chemistry, 1997, 272, 8482-8489.	3.4	106
213	Effects of atrial natriuretic peptide on phagocytosis and respiratory burst in murine macrophages. European Journal of Pharmacology, 1997, 319, 279-285.	3.5	35
214	Analyzing cytotoxic T lymphocyte activity: a simple and reliable flow cytometry-based assay. Journal of Immunological Methods, 1997, 204, 135-142.	1.4	57
215	A Putative Chemokine Receptor, BLR1, Directs B Cell Migration to Defined Lymphoid Organs and Specific Anatomic Compartments of the Spleen. Cell, 1996, 87, 1037-1047.	28.9	1,059
216	Anticoagulant Glycosaminoglycans Activate Respiratory Burst in Neutrophils and Monocytes. Clinical and Applied Thrombosis/Hemostasis, 1996, 2, 116-122.	1.7	2

#	Article	IF	CITATIONS
217	Influence of Glycosaminoglycans on Natural Killer Cell Activity. , 1996, , 243-248.		0
218	A versatile flow cytometry-based assay for the determination of short- and long-term natural killer cell activity. Journal of Immunological Methods, 1995, 185, 209-216.	1.4	68
219	Organization of the α-Globin Promoter and Possible Role of Nuclear Factor I in an α-Globin-inducible and in a Noninducible Cell Line. Journal of Biological Chemistry, 1995, 270, 19643-19650.	3.4	21
220	The G protein-coupled receptor BLR1 is involved in murine B cell differentiation and is also expressed in neuronal tissues. European Journal of Immunology, 1993, 23, 2532-2539.	2.9	65