
Ian D Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5697049/publications.pdf Version: 2024-02-01

IAN DIONES

#	Article	IF	CITATIONS
1	Phenological sensitivity to climate across taxa and trophic levels. Nature, 2016, 535, 241-245.	27.8	705
2	Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 2010, 16, 3304-3313.	9.5	690
3	Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environmental Modelling and Software, 2011, 26, 1325-1336.	4.5	347
4	Testing the Sensitivity of Phytoplankton Communities to Changes in Water Temperature and Nutrient Load, in a Temperate Lake. Hydrobiologia, 2006, 559, 401-411.	2.0	213
5	Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biology, 2012, 57, 278-289.	2.4	202
6	Longâ€ŧerm change in the phenology of spring phytoplankton: speciesâ€specific responses to nutrient enrichment and climatic change. Journal of Ecology, 2008, 96, 523-535.	4.0	193
7	The underâ€ice microbiome of seasonally frozen lakes. Limnology and Oceanography, 2013, 58, 1998-2012.	3.1	173
8	Effects of weatherâ€related episodic events in lakes: an analysis based on highâ€frequency data. Freshwater Biology, 2012, 57, 589-601.	2.4	135
9	Global lake thermal regions shift under climate change. Nature Communications, 2020, 11, 1232.	12.8	96
10	Diel Surface Temperature Range Scales with Lake Size. PLoS ONE, 2016, 11, e0152466.	2.5	89
11	Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Climatic Change, 2017, 141, 759-773.	3.6	83
12	Effects of recent climate change on phytoplankton phenology in a temperate lake. Freshwater Biology, 2009, 54, 1888-1898.	2.4	68
13	Global phenological insensitivity to shifting ocean temperatures among seabirds. Nature Climate Change, 2018, 8, 313-318.	18.8	68
14	Automated calculation of surface energy fluxes with high-frequency lake buoy data. Environmental Modelling and Software, 2015, 70, 191-198.	4.5	67
15	Northern Hemisphere Atmospheric Stilling Accelerates Lake Thermal Responses to a Warming World. Geophysical Research Letters, 2019, 46, 11983-11992.	4.0	65
16	The effect of water colour on lake hydrodynamics: a modelling study. Freshwater Biology, 2008, 53, 2345-2355.	2.4	58
17	Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 2020, 10, 20514.	3.3	56
18	Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake. Freshwater Biology, 2007, 52, 988-997.	2.4	55

Ian D Jones

#	Article	IF	CITATIONS
19	Food web deâ€synchronization in <scp>E</scp> ngland's largest lake: an assessment based on multiple phenological metrics. Global Change Biology, 2013, 19, 3568-3580.	9.5	54
20	Profound daily vertical stratification and mixing in a small, shallow, wind-exposed lake with submerged macrophytes. Aquatic Sciences, 2017, 79, 395-406.	1.5	52
21	Quantifying effects of phytoplankton on the heat budgets of two large limnetic enclosures. Freshwater Biology, 2005, 50, 1239-1247.	2.4	51
22	Spring phytoplankton phenology - are patterns and drivers of change consistent among lakes in the same climatological region?. Freshwater Biology, 2012, 57, 331-344.	2.4	47
23	Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnology and Oceanography, 2018, 63, 2436-2449.	3.1	47
24	Adaptive forecasting of phytoplankton communities. Water Research, 2018, 134, 74-85.	11.3	41
25	Delving deeper: Metabolic processes in the metalimnion of stratified lakes. Limnology and Oceanography, 2017, 62, 1288-1306.	3.1	40
26	Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshwater Biology, 2012, 57, 290-304.	2.4	39
27	Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy, 2021, 219, 24-33.	6.1	38
28	Wide-spread inconsistency in estimation of lake mixed depth impacts interpretation of limnological processes. Water Research, 2020, 168, 115136.	11.3	37
29	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	3.6	37
30	Assessment of longâ€ŧerm changes in habitat availability for Arctic charr (<i>Salvelinus alpinus</i>) in a temperate lake using oxygen profiles and hydroacoustic surveys. Freshwater Biology, 2008, 53, 393-402.	2.4	35
31	A novel method for estimating the onset of thermal stratification in lakes from surface water measurements. Water Resources Research, 2014, 50, 5131-5140.	4.2	35
32	A comparison of the diel variability in epilimnetic temperature for five lakes in the English Lake District. Inland Waters, 2015, 5, 139-154.	2.2	31
33	Latitude and lake size are important predictors of over″ake atmospheric stability. Geophysical Research Letters, 2017, 44, 8875-8883.	4.0	31
34	The importance of nutrient source in determining the influence of retention time on phytoplankton: an explorative modelling study of a naturally well-flushed lake. Hydrobiologia, 2009, 627, 129-142.	2.0	26
35	The long-term (1979–2005) effects of the North Atlantic Oscillation on wind-induced wave mixing in Loch Leven (Scotland). Hydrobiologia, 2010, 646, 49-59.	2.0	26
36	Variability in epilimnion depth estimations in lakes. Hydrology and Earth System Sciences, 2020, 24, 5559-5577.	4.9	25

Ian D Jones

#	Article	IF	CITATIONS
37	Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshwater Biology, 2006, 51, 1798-1810.	2.4	24
38	Eight decades of phenological change for a freshwater cladoceran: what are the consequences of our definition of seasonal timing?. Freshwater Biology, 2012, 57, 345-359.	2.4	24
39	Wind and trophic status explain within and amongâ€lake variability of algal biomass. Limnology and Oceanography Letters, 2018, 3, 409-418.	3.9	24
40	Modelling lake cyanobacterial blooms: Disentangling the climateâ€driven impacts of changing mixed depth and water temperature. Freshwater Biology, 2019, 64, 2141-2155.	2.4	24
41	The role of internal feedbacks in shifting deep lake mixing regimes under a warming climate. Freshwater Biology, 2021, 66, 1021-1035.	2.4	24
42	Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees. Environmental Research Letters, 2020, 15, 114055.	5.2	24
43	Modelling the effects on phytoplankton communities of changing mixed depth and background extinction coefficient on three contrasting lakes in the English Lake District. Freshwater Biology, 2008, 53, 2573-2586.	2.4	21
44	Increases in lake phytoplankton biomass caused by future climate-driven changes to seasonal river flow. Global Change Biology, 2011, 17, 1809-1820.	9.5	19
45	Can reductions in water residence time be used to disrupt seasonal stratification and control internal loading in a eutrophic monomictic lake?. Journal of Environmental Management, 2022, 304, 114169.	7.8	13
46	Modelling the Impact of Climate Change on the Thermal Characteristics of Lakes. , 2010, , 103-120.		11
47	Spatial heterogeneity in a small, temperate lake during archetypal weak forcing conditions. Fundamental and Applied Limnology, 2011, 179, 27-40.	0.7	10
48	Transition zones in small lakes: the importance of dilution and biological uptake on lake-wide heterogeneity. Hydrobiologia, 2011, 678, 85-97.	2.0	9
49	Interannual variations in atmospheric forcing determine trajectories of hypolimnetic soluble reactive phosphorus supply in a eutrophic lake. Freshwater Biology, 2014, 59, 1646-1658.	2.4	9
50	Constraining uncertainty and process-representation in an algal community lake model using high frequency in-lake observations. Ecological Modelling, 2017, 357, 1-13.	2.5	9
51	Annual water residence time effects on thermal structure: A potential lake restoration measure?. Journal of Environmental Management, 2022, 314, 115082.	7.8	9
52	Isopycnic modeling of the North Atlantic heat budget. Journal of Geophysical Research, 1999, 104, 1377-1392.	3.3	6
53	Automatic in-lake monitoring in the English Lake District: The effect of lake size on stratification. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2008, 30, 70-72.	0.1	2
54	From Ecological Informatics to the Generation of Ecological Knowledge: Long-Term Research in the English Lake District. , 2018, , 455-482.		2

#	Article	IF	CITATIONS
55	Biophysical Interactions in Phytoplankton. , 2022, , 154-162.		2
56	The influence of different environmental conditions upon the initial development and ecological dynamics of phytobenthic communities. Fundamental and Applied Limnology, 2014, 185, 139-153.	0.7	1
57	Ecological Consequences of Climate Extremes for Lakes. , 2021, , .		1