Maria Pilar Aoki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5696868/publications.pdf Version: 2024-02-01

Μλαιλ Ριίλα Δοκι

#	Article	IF	CITATIONS
1	Purinergic modulation of the immune response to infections. Purinergic Signalling, 2022, 18, 93-113.	2.2	15
2	Wnt Signaling Plays a Key Role in the Regulation of the Immune Response and Cardiac Damage during <i>Trypanosoma cruzi</i> Infection. ACS Infectious Diseases, 2021, 7, 566-578.	3.8	2
3	Improved efficacy and safety of low doses of benznidazole-loaded multiparticulate delivery systems in experimental Chagas disease therapy. European Journal of Pharmaceutical Sciences, 2021, 164, 105912.	4.0	5
4	HIF-1α and CD73 expression in cardiac leukocytes correlates with the severity of myocarditis in end-stage Chagas disease patients. Journal of Leukocyte Biology, 2021, 109, 233-244.	3.3	6
5	Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165592.	3.8	8
6	Preface. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165953.	3.8	0
7	Anti-inflammatory Role of Galectin-8 During Trypanosoma cruzi Chronic Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 285.	3.9	7
8	Isolation and Phenotypic Characterization of Inflammatory Cells from Clinical Samples: Purification of Macrophages from Trypanosoma cruzi-Infected Hearts. Methods in Molecular Biology, 2019, 1955, 381-395.	0.9	3
9	Pro-inflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR. EBioMedicine, 2019, 50, 290-305.	6.1	87
10	Monocyte glycolysis determines CD8+ T cell functionality in human Chagas disease. JCI Insight, 2019, 4,	5.0	11
11	Multi-kinetic release of benznidazole-loaded multiparticulate drug delivery systems based on polymethacrylate interpolyelectrolyte complexes. European Journal of Pharmaceutical Sciences, 2018, 120, 107-122.	4.0	20
12	Interleukinâ€6 signalling mediates Galectinâ€8 coâ€stimulatory activity of antigenâ€specific <scp>CD</scp> 4 Tâ€cell response. Immunology, 2018, 155, 379-386.	4.4	11
13	IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 857-869.	3.8	76
14	New Insights into the Immunobiology of Mononuclear Phagocytic Cells and Their Relevance to the Pathogenesis of Cardiovascular Diseases. Frontiers in Immunology, 2017, 8, 1921.	4.8	37
15	IL-6 Improves the Nitric Oxide-Induced Cytotoxic CD8+ T Cell Dysfunction in Human Chagas Disease. Frontiers in Immunology, 2016, 7, 626.	4.8	30
16	Clomipramine and Benznidazole Act Synergistically and Ameliorate the Outcome of Experimental Chagas Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 3700-3708.	3.2	22
17	CD73 Inhibition Shifts Cardiac Macrophage Polarization toward a Microbicidal Phenotype and Ameliorates the Outcome of Experimental Chagas Cardiomyopathy. Journal of Immunology, 2016, 197, 814-823.	0.8	32
18	PD-L2 negatively regulates Th1-mediated immunopathology during <i>Fasciola hepatica</i> infection. Oncotarget, 2016, 7, 77721-77731.	1.8	20

Maria Pilar Aoki

#	Article	IF	CITATIONS
19	Chronic <i>Trypanosoma cruzi</i> infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model. Oncotarget, 2016, 7, 13400-13415.	1.8	38
20	Myeloidâ€derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. European Journal of Immunology, 2014, 44, 184-194.	2.9	67
21	Trypanosoma cruzi, the causative agent of Chagas disease, modulates interleukin-6-induced STAT3 phosphorylation via gp130 cleavage in different host cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 485-494.	3.8	21
22	Nonimmune Cells Contribute to Crosstalk between Immune Cells and Inflammatory Mediators in the Innate Response to <i>Trypanosoma cruzi</i> Infection. Journal of Parasitology Research, 2012, 2012, 1-13.	1.2	18
23	Toll-like receptor-2 and interleukin-6 mediate cardiomyocyte protection from apoptosis during Trypanosoma cruzi murine infection. Medical Microbiology and Immunology, 2012, 201, 145-155.	4.8	43
24	Trypanosoma cruzi antigen immunization induces a higher B cell survival in BALB/c mice, a susceptible strain, compared to C57BL/6 B lymphocytes, a resistant strain to cardiac autoimmunity. Medical Microbiology and Immunology, 2011, 200, 209-218.	4.8	9
25	Importance of TLR2 on Hepatic Immune and Non-Immune Cells to Attenuate the Strong Inflammatory Liver Response During Trypanosoma cruzi Acute Infection. PLoS Neglected Tropical Diseases, 2010, 4, e863.	3.0	26
26	Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine, 2010, 28, 5718-5724.	3.8	16
27	TLR2, TLR4 and TLR9 are differentially modulated in liver lethally injured from BALB/c and C57BL/6 mice during Trypanosoma cruzi acute infection. Molecular Immunology, 2008, 45, 3580-3588.	2.2	28
28	Subchronic mycotoxicoses in rats. Histopathological changes and modulation of the sphinganine to sphingosine (Sa/So) ratio imbalance induced by Fusarium verticillioides culture material, due to the coexistence of aflatoxin B1 in the diet. Food and Chemical Toxicology, 2008, 46, 967-977.	3.6	32
29	Inducible Nitric Oxide Synthase and Arginase Expression in Heart Tissue during Acute <i>Trypanosoma cruzi</i> Infection in Mice: Arginase I Is Expressed in Infiltrating CD68 ⁺ Macrophages. Journal of Infectious Diseases, 2008, 197, 1772-1782.	4.0	53
30	Spleen B cells from BALB/c are more prone to activation than spleen B cells from C57BL/6 mice during a secondary immune response to cruzipain. International Immunology, 2007, 19, 1395-1402.	4.0	28
31	Immunisation with a major Trypanosoma cruzi antigen promotes pro-inflammatory cytokines, nitric oxide production and increases TLR2 expression. International Journal for Parasitology, 2007, 37, 1243-1254.	3.1	31
32	Hepatocellular apoptosis during Candida albicans colonization: involvement of TNF-Â and infiltrating Fas-L positive lymphocytes. International Immunology, 2006, 18, 1719-1728.	4.0	23
33	Heat killed cells ofCryptococcus neoformansvar.grubiiinduces protective immunity in rats: immunological and histopathological parameters. Medical Mycology, 2006, 44, 493-504.	0.7	8
34	Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes. American Journal of Physiology - Cell Physiology, 2004, 286, C206-C212.	4.6	52
35	Immunosuppression, interleukin-10 synthesis and apoptosis are induced in rats inoculated with Cryptococcus neoformans glucuronoxylomannan. Immunology, 2004, 113, 392-400.	4.4	37
36	Immune response to a major Trypanosoma cruzi antigen, cruzipain, is differentially modulated in C57BL/6 and BALB/c mice. Microbes and Infection, 2004, 6, 1250-1258.	1.9	32

MARIA PILAR AOKI

#	Article	IF	CITATIONS
37	Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages. Glycobiology, 2003, 13, 119-128.	2.5	127
38	Apoptosis induction by glucuronoxylomannan of Cryptococcus neoformans. Medical Mycology, 2003, 41, 347-353.	0.7	38
39	Sexual dimorphism of apoptosis in lactotrophs induced by bromocryptine. Histochemistry and Cell Biology, 2001, 116, 215-222.	1.7	22
40	Apoptotic and non-apoptotic cell death in hormone-dependent glands. Cell and Tissue Research, 1998, 291, 571-574.	2.9	16