
Je-Hyung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5695566/publications.pdf Version: 2024-02-01

IE-HYLING KIM

#	Article	IF	CITATIONS
1	InAsP Quantum Dot-Embedded InP Nanowires toward Silicon Photonic Applications. ACS Applied Materials & Interfaces, 2022, 14, 12488-12494.	8.0	7
2	High-Crystalline Monolayer Transition Metal Dichalcogenides Films for Wafer-Scale Electronics. ACS Nano, 2021, 15, 3038-3046.	14.6	69
3	High-Resolution, High-Contrast Optical Interface for Defect Qubits. ACS Photonics, 2021, 8, 2642-2649.	6.6	3
4	Temporal shaping of single photons by engineering exciton dynamics in a single quantum dot. APL Photonics, 2021, 6, 080801.	5.7	3
5	Strong Zero-Phonon Transition from Point Defect-Stacking Fault Complexes in Silicon Carbide Nanowires. Nano Letters, 2021, 21, 9187-9194.	9.1	7
6	Optical Repumping of Resonantly Excited Quantum Emitters in Hexagonal Boron Nitride. Physical Review Applied, 2020, 14, .	3.8	14
7	A broadband ultraviolet light source using GaN quantum dots formed on hexagonal truncated pyramid structures. Nanoscale Advances, 2020, 2, 1449-1455.	4.6	3
8	Hybrid integration methods for on-chip quantum photonics. Optica, 2020, 7, 291.	9.3	161
9	Engineered Quantum Light Sources from 2D Monolayers on a Micro-actuator. , 2020, , .		0
10	Position and Frequency Control of Strain-induced Quantum Emitters in WSe2 Monolayers. , 2020, , .		0
11	Position and Frequency Control of Strain-Induced Quantum Emitters in WSe ₂ Monolayers. Nano Letters, 2019, 19, 7534-7539.	9.1	36
12	Direct Transfer of Light's Orbital Angular Momentum onto a Nonresonantly Excited Polariton Superfluid. Physical Review Letters, 2019, 122, 045302.	7.8	35
13	Integrated Single Photon Source of InAs Quantum Dot with Silicon-Based Photonic Circuits. , 2019, , .		0
14	Origin of spectral brightness variations in InAs/InP quantum dot telecom single photon emitters. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 011202.	1.2	3
15	Silicon photonic add-drop filter for quantum emitters. Optics Express, 2019, 27, 16882.	3.4	9
16	Integration of Quantum Emitters with Lithium Niobate Photonics. , 2019, , .		1
17	Active Control of Photon Recycling for Tunable Optoelectronic Materials. Advanced Optical Materials, 2018, 6, 1701323.	7.3	6
18	Site-Selective, Two-Photon Plasmonic Nanofocusing on a Single Quantum Dot for Near-Room-Temperature Operation. ACS Photonics, 2018, 5, 711-717.	6.6	9

Je-Hyung Kim

#	Article	IF	CITATIONS
19	Integration of quantum dots with lithium niobate photonics. Applied Physics Letters, 2018, 113, .	3.3	66
20	Scalable Quantum Photonics Using Quantum Dots. , 2018, , .		0
21	Hybrid Integration of Solid-State Quantum Emitters with a Silicon Chip. , 2018, , .		0
22	Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. Nano Letters, 2018, 18, 4734-4740.	9.1	67
23	Radiative Enhancement of Single Quantum Emitters in WSe ₂ Monolayers Using Site-Controlled Metallic Nanopillars. ACS Photonics, 2018, 5, 3466-3471.	6.6	51
24	A Silicon Photonic On-Chip Filter for Quantum Emitters. , 2018, , .		0
25	MBE growth of telecommunication wavelength single photon emitters. , 2018, , .		0
26	GROUP III-NITRIDE NANOSTRUCTURES FOR LIGHT-EMITTING DEVICES AND BEYOND. , 2017, , 369-399.		0
27	Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip. Nano Letters, 2017, 17, 7394-7400.	9.1	142
28	Semiconductor quantum networks using quantum dots. , 2017, , .		1
29	Two-Photon Interference from Multiple Solid-State Quantum Emitters. , 2017, , .		0
30	Chip-Integrated Multiple Identical Quantum Emitters. , 2017, , .		0
31	Quantum dots in photonic crystals for integrated quantum photonics. , 2017, , .		0
32	Two-photon interference from a bright single-photon source at telecom wavelengths. Optica, 2016, 3, 577.	9.3	115
33	Two-Photon Interference from the Far-Field Emission of Chip-Integrated Cavity-Coupled Emitters. Nano Letters, 2016, 16, 7061-7066.	9.1	41
34	Optical properties of Al0.5Ga0.5N/GaN polar quantum dots and UV LEDs made of them. , 2015, , .		0
35	Red Emission of InGaN/GaN Double Heterostructures on GaN Nanopyramid Structures. ACS Photonics, 2015, 2, 515-520.	6.6	29
36	Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5280-5285.	7.1	36

Је-Нуимд Кім

#	Article	IF	CITATIONS
37	Stark effect in ensembles of polar (0001) Al0.5Ga0.5N/GaN quantum dots and comparison with semipolar (11â^22) ones. Journal of Applied Physics, 2014, 116, 034308.	2.5	15
38	Toward highly radiative white light emitting nanostructures: a new approach to dislocation-eliminated GaN/InGaN core–shell nanostructures with a negligible polarization field. Nanoscale, 2014, 6, 14213-14220.	5.6	21
39	Strain- and surface-induced modification of photoluminescence from self-assembled GaN/Al _{0.5} Ga _{0.5} N quantum dots: strong effect of capping layer and atmospheric condition. Nanotechnology, 2014, 25, 305703.	2.6	7
40	Group III-Nitride Semiconductor Nanostructures for Novel Photonic and Quantum Photonic Applications. , 2014, , .		0
41	Graphene Quantum Dots: Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence (Adv. Mater. 27/2013). Advanced Materials, 2013, 25, 3748-3748.	21.0	10
42	Structural and photoluminescence studies of highly crystalline un-annealed ZnO nanorods arrays synthesized by hydrothermal technique. Journal of Luminescence, 2013, 144, 234-240.	3.1	5
43	Graphene oxide/N-methyl-2-pyrrolidone charge-transfer complexes for molecular detection. Sensors and Actuators B: Chemical, 2013, 176, 81-85.	7.8	8
44	Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence. Advanced Materials, 2013, 25, 3657-3662.	21.0	549
45	Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk. Scientific Reports, 2013, 3, 2150.	3.3	45
46	Photoexcitations From Intrachain and Interchain Excitons of Surface Plasmon Mediated Conjugated Polymers for PLED. Journal of Display Technology, 2012, 8, 439-443.	1.2	1
47	Dislocation-Eliminating Chemical Control Method for High-Efficiency GaN-Based Light Emitting Nanostructures. Crystal Growth and Design, 2012, 12, 1292-1298.	3.0	16
48	Growth Mechanism of Catalyst-Free and Mask-Free Heteroepitaxial GaN Submicrometer- and Micrometer-Sized Rods under Biaxial Strain: Variation of Surface Energy and Adatom Kinetics. Crystal Growth and Design, 2012, 12, 3838-3844.	3.0	25
49	Electrically Driven Quantum Dot/Wire/Well Hybrid Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 5364-5369.	21.0	70
50	Carrier transfer and recombination dynamics of a long-lived and visible range emission from multi-stacked GaN/AlGaN quantum dots. Applied Physics Letters, 2010, 97, 061905.	3.3	10