Sergey I Popel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5694520/publications.pdf Version: 2024-02-01

SEDCEV | DODEL

#	Article	IF	CITATIONS
1	Dust dynamics in the lunar dusty plasmas: Effects of magnetic fields and dust charge variations. Physics of Plasmas, 2022, 29, .	1.9	15
2	Dust Acoustic Solitons in Saturn's Dust-Filled Magnetosphere. Plasma Physics Reports, 2022, 48, 141-146.	0.9	12
3	Modified Kadomtsev–Petviashvili Equation for Description of Nonlinear Perturbations in Plasma of Dusty Lunar Exosphere. Plasma Physics Reports, 2022, 48, 361-366.	0.9	4
4	Dusty plasmas at the Moon: Effects of magnetic fields. Journal of Physics: Conference Series, 2021, 1787, 012051.	0.4	0
5	Dusty plasma environment near lunar surface. Journal of Physics: Conference Series, 2021, 1787, 012050.	0.4	Ο
6	Electrophonic noises from meteors and dust acoustic modulational perturbations. Journal of Physics: Conference Series, 2021, 1787, 012052.	0.4	2
7	Some aspects of modulational interaction in Earth's dusty ionosphere. Physics of Plasmas, 2021, 28, 033703.	1.9	4
8	Nonstationary Processes in the Formation of a Dusty Plasma near the Surface of Phobos. JETP Letters, 2021, 113, 428-432.	1.4	9
9	On a Possible Process for the Formation of Iron Oxide in the Lunar Regolith. Solar System Research, 2021, 55, 309-314.	0.7	1
10	Non-Stationary Processes during the Formation of Dusty Plasma at the Surface of Deimos, the Satellite of Mars. Plasma Physics Reports, 2021, 47, 826-831.	0.9	4
11	On the Fluxes of Dust Particles Detected near the Lunar Surface by the Chang'e 3 Lander. Solar System Research, 2021, 55, 389-397.	0.7	9
12	Modulational Interaction in a Dusty Plasma of Meteoroid Wakes. Geomagnetism and Aeronomy, 2021, 61, 888-895.	0.8	3
13	PmL Instrument Onboard Luna-25 Lander: Plasma–Dust Measurements in the Surface Exosphere. Solar System Research, 2021, 55, 576-587.	0.7	2
14	Dust Acoustic Solitons in the Plasma of the Dusty Exosphere of the Moon. Technical Physics Letters, 2021, 47, 455-458.	0.7	8
15	On dusty plasma formation in Martian ionosphere. Journal of Physics: Conference Series, 2020, 1556, 012072.	0.4	2
16	On the Plasma–Dust Processes Accompanying Meteor Showers. Plasma Physics Reports, 2020, 46, 1075-1088.	0.9	6
17	Dust Ion–Acoustic Shock Waves in Laboratory, Ionospheric, and Astrophysical Plasmas. Plasma Physics Reports, 2020, 46, 1089-1107.	0.9	22
18	Electric field influence on dust particle dynamics in dust vortices. Journal of Physics: Conference Series, 2020, 1556, 012071.	0.4	0

#	Article	IF	CITATIONS
19	Characteristics of Internal Gravity Waves and Earthquake Prediction. Doklady Earth Sciences, 2020, 493, 632-635.	0.7	1
20	Dusty Plasma at the Moon. Challenges of Modeling and Measurements. Plasma Physics Reports, 2020, 46, 527-540.	0.9	17
21	Lower-hybrid turbulence in the near-surface lunar dusty plasmas. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126627.	2.1	17
22	On the Possibility of Excitation of Oscillations in a Schumann Resonator on Mars. Plasma Physics Reports, 2020, 46, 65-70.	0.9	1
23	Formation of Microspherules of Lunar Regolith in Plasma–Dust Processes Initiated by Meteoroid Impacts. Plasma Physics Reports, 2020, 46, 265-272.	0.9	7
24	On the Possibility of Dust Acoustic Perturbations in Martian Ionosphere. Plasma Physics Reports, 2020, 46, 1205-1209.	0.9	4
25	Fluxes of Dust Particles in the Martian System. Technical Physics Letters, 2020, 46, 812-814.	0.7	3
26	Lunar Dust: Properties and Potential Hazards. Solar System Research, 2020, 54, 455-476.	0.7	23
27	Lifting of Dust Particles under the Action of Laser Radiation on a Chondritic Target and the Possibility of Modeling Plasma–Dust Processes on the Lunar Surface. Technical Physics Letters, 2020, 46, 1041-1044.	0.7	2
28	Detection of impact-produced dust clouds near the lunar terminator. Planetary and Space Science, 2019, 177, 104689.	1.7	10
29	Formation and Evolution of Dusty Plasma Structures in the Ionospheres of the Earth and Mars. Plasma Physics Reports, 2019, 45, 928-935.	0.9	12
30	Variations of the Parameters of Internal Gravity Waves in the Atmosphere of Central Asia before Earthquakes. Doklady Earth Sciences, 2019, 487, 841-845.	0.7	7
31	Dusty Plasmas over Hydrogen-Rich Areas of Lunar Surface. , 2019, , .		0
32	Dusty Plasmas in the System of Mars: Review of Recent Theoretical Research at the Space Research Institute RAS. , 2019, , .		0
33	Wave Processes in the Dusty Plasma at Phobos and Deimos. Plasma Physics Reports, 2019, 45, 855-862.	0.9	2
34	Role of Collisions with Neutrals in the Process of Modulational Excitation of Dust Acoustic Perturbations in Dusty Ionosphere. Plasma Physics Reports, 2019, 45, 355-360.	0.9	8
35	Water Formation in the Lunar Regolith. Cosmic Research, 2019, 57, 79-84.	0.6	8
36	Dusty plasmas at Martian satellites. Journal of Physics: Conference Series, 2019, 1147, 012110.	0.4	4

#	Article	IF	CITATIONS
37	Dust-Acoustic Solitons in Dusty Ionospheric Plasma Containing Adiabatically Captured Electrons. Technical Physics Letters, 2019, 45, 1035-1038.	0.7	6
38	On the Question of Calculating the Parameters of Vortices in the Near-Surface Atmosphere of Mars. Solar System Research, 2019, 53, 423-430.	0.7	4
39	Dust Particle Dynamics in Convective Vortices Near the Surface of the Earth: Comparison with Mars. Springer Proceedings in Earth and Environmental Sciences, 2019, , 507-514.	0.4	0
40	Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems. Planetary and Space Science, 2018, 156, 71-84.	1.7	73
41	Electron Beam Action and High Charging of Dust Particles. IEEE Transactions on Plasma Science, 2018, 46, 701-703.	1.3	6
42	Dusty plasmas in the lunar exosphere: Effects of meteoroids. Journal of Physics: Conference Series, 2018, 946, 012142.	0.4	1
43	Interaction of the Earth's Magnetotail With Dusty Plasma Near the Lunar Surface: Wave Processes and Turbulent Magnetic Reconnection. IEEE Transactions on Plasma Science, 2018, 46, 731-736.	1.3	14
44	Numerical modelling of the Luna-Glob lander electric charging on the lunar surface with SPIS-DUST. Planetary and Space Science, 2018, 156, 62-70.	1.7	16
45	Formation of Dusty Plasma Clouds at Meteoroid Impact on the Surface of the Moon. JETP Letters, 2018, 108, 356-363.	1.4	11
46	Nonlinear Wave Structures and Plasmaâ^'Dust Effects in the Earth's Atmosphere. Plasma Physics Reports, 2018, 44, 835-839.	0.9	8
47	Dusty plasma interactions near the Moon and in the system of Mars. Proceedings of the International Astronomical Union, 2018, 14, 389-390.	0.0	0
48	Experimental Study of Small-Scale Mineral Particles in the Atmosphere of Central Asia. Izvestiya, Physics of the Solid Earth, 2018, 54, 330-335.	0.9	3
49	Dusty Plasma near the Martian Satellite Deimos. Plasma Physics Reports, 2018, 44, 723-728.	0.9	8
50	Dusty plasma effects in the atmosphere of Mars and near the Martian Surface. Proceedings of the International Astronomical Union, 2018, 14, 411-412.	0.0	0
51	Wave processes during the interaction of the Earth's magnetotail with dusty plasma near the lunar surface. Plasma Physics Reports, 2017, 43, 566-575.	0.9	27
52	Impacts of fast meteoroids and a plasma–dust cloud over the lunar surface. JETP Letters, 2017, 105, 635-640.	1.4	23
53	Plasma Effects in Dust Devils near the Martian Surface. Plasma Physics Reports, 2017, 43, 1172-1178.	0.9	16
54	Dusty plasma near the surface of phobos. JETP Letters, 2017, 106, 485-490.	1.4	9

#	Article	IF	CITATIONS
55	Lunar Dust: Properties and Investigation Techniques. Solar System Research, 2017, 51, 611-622.	0.7	21
56	Charged Dust Motion in Dust Devils on Earth and Mars. Contributions To Plasma Physics, 2016, 56, 263-269.	1.1	9
57	Meteoroid impacts and dust particles in near-surface lunar exosphere. Journal of Physics: Conference Series, 2016, 774, 012175.	0.4	6
58	Properties and origin of small particles in the atmosphere of Central Asia. Doklady Earth Sciences, 2016, 466, 177-182.	0.7	3
59	Impacts of fast meteoroids and the separation of dust particles from the surface of the Moon. JETP Letters, 2016, 103, 563-567.	1.4	35
60	Dusty plasma in the region of the lunar terminator. Plasma Physics Reports, 2016, 42, 543-548.	0.9	11
61	Nonlinear acoustic-gravity waves and dust particle redistribution in earth's atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 41-46.	1.6	8
62	Dusty plasma sheath-like structure in the region of lunar terminator. Physics of Plasmas, 2015, 22, .	1.9	42
63	Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface. Journal of Physics: Conference Series, 2015, 653, 012139.	0.4	10
64	Modulational excitation of inhomogeneities in dusty ionospheric plasma. Plasma Physics Reports, 2015, 41, 171-177.	0.9	9
65	Radiative forcing of aerosols in Central Asia. Doklady Earth Sciences, 2015, 460, 137-141.	0.7	6
66	Wave processes in dusty plasma near the Moon's surface. Plasma Physics Reports, 2015, 41, 799-807.	0.9	22
67	Nanoscale particles in technological processes of beneficiation. Beilstein Journal of Nanotechnology, 2014, 5, 458-465.	2.8	Ο
68	Photoelectron distribution function over the illuminated part of the Moon. European Physical Journal D, 2014, 68, 1.	1.3	13
69	Dusty plasmas over the Moon. Journal of Plasma Physics, 2014, 80, 885-893.	2.1	17
70	Effect of the solar wind on the formation of a photoinduced dusty plasma layer near the surface of the Moon. JETP Letters, 2014, 98, 664-669.	1.4	26
71	On the distributions of photoelectrons over the illuminated part of the moon. JETP Letters, 2014, 99, 115-120.	1.4	50
72	Dusty plasma at the surface of the moon. Solar System Research, 2013, 47, 419-429.	0.7	80

#	Article	IF	CITATIONS
73	Dusty plasma processes in Earth's polar summer mesosphere. Journal of Plasma Physics, 2013, 79, 383-385.	2.1	1
74	Future lunar missions and investigation of dusty plasma processes on the Moon. Journal of Plasma Physics, 2013, 79, 405-411.	2.1	20
75	Waves in a dusty plasma over the illuminated part of the Moon. Journal of Plasma Physics, 2013, 79, 1071-1074.	2.1	32
76	Quantum fluctuations, radiative-resonant interactions, and fast particles in plasmas. , 2012, , .		2
77	Solitary waves and vortices in plasmas with nanoparticles. , 2012, , .		0
78	Formation and evolution of dusty plasma structures in the ionosphere. JETP Letters, 2012, 96, 21-26.	1.4	24
79	Experimental study of small-scale particles in atmospheric brown clouds. Doklady Earth Sciences, 2012, 447, 1317-1321.	0.7	6
80	Ion-acoustic solitons in dusty plasma. Plasma Physics Reports, 2012, 38, 729-742.	0.9	51
81	Weakly dissipative dust-ion-acoustic solitons in complex plasmas and the effect of electromagnetic radiation. Physics of Plasmas, 2012, 19, .	1.9	57
82	Dusty plasma system in the surface layer of the illuminated part of the moon. JETP Letters, 2012, 95, 182-187.	1.4	46
83	Fine-dispersed particles in the natural and anthropogenic geosystems. Izvestiya, Physics of the Solid Earth, 2012, 48, 256-266.	0.9	2
84	Fine Particles and Nonlinear Processes in Plasma Heliogeophysics. Thirty Years of Astronomical Discovery With UKIRT, 2012, , 197-208.	0.3	0
85	Nonlinear excitation of zonal flows and streamers in plasmas. Physics of Plasmas, 2011, 18, 052306.	1.9	9
86	The effect of microscopic charged particulates in space weather. Journal Physics D: Applied Physics, 2011, 44, 174036.	2.8	41
87	Processes accompanying the charging of dust grains in the ionospheric plasma. Plasma Physics Reports, 2011, 37, 696-706.	0.9	8
88	Weakly Dissipative Dust Ion-Acoustic Solitons in the Presence of Electromagnetic Radiation. AIP Conference Proceedings, 2011, , .	0.4	0
89	On Influence of Neutrals on Dust Particle Charging in Complex Plasmas in the Presence of Electromagnetic Radiation. AIP Conference Proceedings, 2011, , .	0.4	0

90 Vortices and Dust Streamers in Earth's lonosphere. , 2011, , .

#	Article	IF	CITATIONS
91	Dusty Plasma Effects in Earth's Magnetosphere. AIP Conference Proceedings, 2011, , .	0.4	1
92	On Limiting Values of Dust Charges in Complex Plasmas. , 2011, , .		0
93	Tropospheric Response to Modulational Excitation of Dust Acoustic Perturbartions in Earth's lonosphere. , 2011, , .		0
94	Model of Sedimentation of Submicron Charged Particles in Earth's Ionosphere. , 2011, , .		0
95	Complex (Dusty) Plasma Processes in Heliogeophysics. AlP Conference Proceedings, 2011, , .	0.4	0
96	Properties of nano- and microparticles emitted into the environment from open-pit mining of iron deposits. Geology of Ore Deposits, 2010, 52, 373-380.	0.7	6
97	Dusty plasma processes in Earth's environments containing nano- and microscale grains. Journal of Plasma Physics, 2010, 76, 525-537.	2.1	0
98	Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere. , 2010, , .		0
99	Fully nonlinear electrostatic waves in electron–positron plasmas. Journal of Plasma Physics, 2010, 76, 267-275.	2.1	28
100	Vortex motions and transportation of fine disperse dust particles in the ionosphere. Doklady Earth Sciences, 2009, 429, 1407-1410.	0.7	3
101	Evolution of weakly dissipative hybrid dust ion-acoustic solitons in complex plasmas. Physics of Plasmas, 2009, 16, .	1.9	49
102	Phenomena associated with complex (dusty) plasmas in the ionosphere during high-speed meteor showers. Physics of Plasmas, 2009, 16, .	1.9	43
103	Synoptic-scale cyclonic vortices and possible transport of fine particles from the troposphere into the stratosphere. Doklady Earth Sciences, 2008, 423, 1475-1478.	0.7	6
104	Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere. Plasma Physics Reports, 2008, 34, 471-479.	0.9	9
105	Complex (dusty) plasma in earth's environments. Physica Scripta, 2008, T131, 014044.	2.5	3
106	Ambipolar diffusion in a complex (dusty) plasma. Physica Scripta, 2008, T131, 014045.	2.5	3
107	Ambipolar diffusion in complex plasma. Physical Review E, 2007, 75, 046403.	2.1	34
108	Nanoparticles in experiments on destruction of rocks by explosion. Doklady Earth Sciences, 2007, 415, 820-822.	0.7	14

#	Article	IF	CITATIONS
109	Nano- and microscale particles and global electromagnetic resonances in the Earth-ionosphere cavity. Plasma Physics Reports, 2007, 33, 138-145.	0.9	8
110	Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere. Plasma Physics Reports, 2007, 33, 289-301.	0.9	19
111	Cavitation separation of nano-and microscale monomineral fractions from polymineral microparticles. Geology of Ore Deposits, 2007, 49, 201-207.	0.7	4
112	Charged dust and shock phenomena in the Solar System. Nonlinear Processes in Geophysics, 2006, 13, 223-229.	1.3	123
113	Solitons in Earth's dusty mesosphere. Advances in Space Research, 2006, 37, 414-419.	2.6	47
114	Formation of nano-and microspherules of minerals in ore deposits depending on depth of host rock occurrence. Geology of Ore Deposits, 2006, 48, 237-243.	0.7	6
115	Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere. AIP Conference Proceedings, 2005, , .	0.4	11
116	Formation of structures in a dusty ionosphere. Journal of Experimental and Theoretical Physics, 2005, 100, 152-164.	0.9	76
117	Dust acoustic solitons in the dusty plasma of the Earth's ionosphere. Plasma Physics Reports, 2005, 31, 198-205.	0.9	28
118	Dust Ion-Acoustic Shocks in a Q Machine Device. Contributions To Plasma Physics, 2005, 45, 461-475.	1.1	34
119	Dissipative processes and dust ion-acoustic shocks in a Q machine device. Physics of Plasmas, 2005, 12, 054501.	1.9	43
120	Dissipative processes during the propagation of nonlinear dust ion-acoustic perturbations. Plasma Physics Reports, 2004, 30, 284-298.	0.9	48
121	Localized structures of nanosize charged dust grains in Earth's middle atmosphere. Planetary and Space Science, 2004, 52, 1187-1194.	1.7	35
122	Shock Melting of a Two-Dimensional Complex (Dusty) Plasma. Physical Review Letters, 2004, 92, 255004.	7.8	120
123	Dust Ion-Acoustic Shock Structures. Physica Scripta, 2004, , 105.	2.5	0
124	Ponderomotive force of the low-frequency field and modulational instability of drift waves. Plasma Physics Reports, 2003, 29, 768-778.	0.9	1
125	Weakly dissipative dust-ion-acoustic solitons. Physical Review E, 2003, 67, 056402.	2.1	139
126	Magnetic field perturbations correlated with large amplitude lower-hybrid waves in a high-voltage linear plasma discharge. Physics of Plasmas, 2003, 10, 2296-2303.	1.9	3

#	Article	IF	CITATIONS
127	Dust ion-acoustic solitons: Role of trapped electrons. AIP Conference Proceedings, 2002, , .	0.4	2
128	Shock wave-like structures in complex plasmas: Theory and experiments. AIP Conference Proceedings, 2002, , .	0.4	2
129	Transient atmosphere generated by large meteoroid impacts onto an atmosphereless cosmic body: gasdynamic and physical processes. International Journal of Impact Engineering, 2002, 27, 521-534.	5.0	14
130	Threshold Energy Density of Lower Hybrid Waves in the Freja Experiment. Plasma Physics Reports, 2001, 27, 448-450.	0.9	19
131	Shocks in Dusty Plasmas: Theory and Experiment. Physica Scripta, 2001, T89, 84.	2.5	1
132	Formation of shocks related to dust-particle charging in complex plasmas. JETP Letters, 2001, 73, 223-227.	1.4	10
133	Shock structure formation in dusty plasmas. Plasma Physics Reports, 2001, 27, 455-461.	0.9	7
134	Influence of electromagnetic radiation on the shock structure formation in complex plasmas. Plasma Physics Reports, 2001, 27, 785-793.	0.9	7
135	Dust ion-acoustic shock-wave structures: Theory and laboratory experiments. JETP Letters, 2001, 74, 362-366.	1.4	51
136	Evolution of perturbation in charge-varying dusty plasmas. Physics of Plasmas, 2001, 8, 1497-1504.	1.9	36
137	Dust particle charging and formation of dust structures in the upper atmosphere. JETP Letters, 2000, 72, 364-368.	1.4	58
138	Shock waves in charge-varying dusty plasmas and the effect of electromagnetic radiation. Physics of Plasmas, 2000, 7, 2410-2416.	1.9	75
139	Self-Organization in Dusty Plasmas. , 2000, , 123-134.		2
140	Shock Waves in Plasmas Containing Dust Particles. , 2000, , 397-400.		0
141	Shocks In Space Dusty Plasmas. , 1999, , 219-226.		2
142	Modulational Interaction And Formation Of Coherent Structures In The Magnetosphere. , 1999, , 693-698.		0
143	Shocks in Space Dusty Plasmas. Astrophysics and Space Science, 1998, 264, 219-226.	1.4	40
144	Entropy and Entropy Production in Modulational Interaction. Transition from Weak to Strong Plasma Turbulence. Physica Scripta, 1998, 57, 272-275.	2.5	6

#	Article	IF	CITATIONS
145	Shock Structures in Plasmas Containing Variable-Charge Macro Particles. , 1998, , 107-123.		6
146	Entropy and Entropy Production in Transition from Weak to Strong Turbulent Plasma State. , 1998, , 269-272.		0
147	Plasma equations in general relativity. Physics of Plasmas, 1997, 4, 2348-2356.	1.9	11
148	Plasma stochasticity and modulational interactions of waves associated with lower-hybrid resonance. Journal of Plasma Physics, 1997, 57, 363-371.	2.1	5
149	Electromagnetic effects in the Earth's ionosphere and magnetosphere caused by a cosmic body. Planetary and Space Science, 1997, 45, 869-875.	1.7	6
150	Shock Structures in Plasmas Containing Variable-Charge Macro Particles. Astrophysics and Space Science, 1997, 256, 107-123.	1.4	49
151	Shock Waves due to Grainâ€Charge Variation in Dusty Plasmas. Contributions To Plasma Physics, 1997, 37, 3-12.	1.1	3
152	Shock waves in plasmas containing variable harge impurities. Physics of Plasmas, 1996, 3, 4313-4315.	1.9	157
153	Electrostatic solitons in an electron–positron plasma with two distinct groups of positrons. Journal of Plasma Physics, 1996, 55, 209-217.	2.1	36
154	WKB-ansatz and description of modulational processes. Physica Scripta, 1996, 53, 92-96.	2.5	1
155	Modulational excitation of drift waves by a beam of lowerâ€hybrid waves. Physics of Plasmas, 1996, 3, 571-577.	1.9	3
156	A threeâ€circulation theorem for relativistic plasmas. Physics of Plasmas, 1996, 3, 482-489.	1.9	5
157	Ion Acoustic Solitons in Impurityâ€Containing Plasmas. Contributions To Plasma Physics, 1995, 35, 103-108.	1.1	98
158	Theory of modulational interactions in plasmas in the presence of an external magnetic field. Physics Reports, 1995, 259, 327-404.	25.6	40
159	Stochastic properties of the modulational interaction in packets of random waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 200, 156-159.	2.1	0
160	Ionâ€acoustic solitons in electron–positron–ion plasmas. Physics of Plasmas, 1995, 2, 716-719.	1.9	451
161	Modulational processes and limits of weak turbulence theory. Physical Review E, 1995, 51, 2390-2400.	2.1	8
162	Bounded and Inhomogeneous Plasmas in External Magnetic Field. Astrophysics and Space Science Library, 1995, , 275-326.	2.7	0

#	Article	IF	CITATIONS
163	Modulational Interactions in Plasmas. Astrophysics and Space Science Library, 1995, , .	2.7	68
164	Excitation of Magnetic Fields. Astrophysics and Space Science Library, 1995, , 205-227.	2.7	0
165	Instabilities in Collisional Plasmas. Astrophysics and Space Science Library, 1995, , 327-381.	2.7	0
166	Modulational Interaction of Potential Electric Fields. Astrophysics and Space Science Library, 1995, , 55-118.	2.7	0
167	Higher Nonlinearities. Astrophysics and Space Science Library, 1995, , 119-159.	2.7	0
168	Modulational interaction of short-wavelength ion-acoustic oscillations in impurity-containing plasmas. Physical Review E, 1994, 50, 3060-3067.	2.1	33
169	Modulational instability of Langmuir wave packets. Physics of Plasmas, 1994, 1, 2176-2188.	1.9	23
170	Physical aspects of the plasma-maser interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 184, 454-458.	2.1	6
171	On Modulational Interaction of the Lowerâ€Hybrid Drift Oscillations. Contributions To Plasma Physics, 1994, 34, 5-18.	1.1	3
172	On Modulational Instability of Turbulent Spectra. Contributions To Plasma Physics, 1994, 34, 695-702.	1.1	3
173	Finite amplitude waves in ion-beam plasma systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 190, 460-464.	2.1	9
174	Theory of modulational interactions in collisional plasmas. Physica Scripta, 1994, 50, 161-180.	2.5	17
175	Modulational Interactions of Two Monochromatic Waves and Packets of Random Waves. Australian Journal of Physics, 1994, 47, 375.	0.6	4
176	On the Evolution of Resonant Waves in Closed Plasma Systems. Contributions To Plasma Physics, 1993, 33, 1-5.	1.1	7
177	Modulational instability of Langmuir waves in dense plasmas. Physics of Fluids B, 1993, 5, 4109-4114.	1.7	7
178	Plasma-maser effect and evolution of resonant waves in turbulent plasmas. Physica Scripta, 1993, 47, 239-243.	2.5	7
179	On modulational interaction of lower-hybrid waves. Physica Scripta, 1992, 46, 65-71.	2.5	6
180	On the Nonlinear Processes During Generation of Current Drive. Contributions To Plasma Physics, 1992, 32, 77-84.	1.1	4