Sergey I Popel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5694520/publications.pdf

Version: 2024-02-01

180 papers 3,474 citations

32 h-index 54 g-index

188 all docs

188 docs citations

188 times ranked 808 citing authors

#	Article	IF	CITATIONS
1	Ionâ€acoustic solitons in electron–positron–ion plasmas. Physics of Plasmas, 1995, 2, 716-719.	1.9	451
2	Shock waves in plasmas containing variableâ€charge impurities. Physics of Plasmas, 1996, 3, 4313-4315.	1.9	157
3	Weakly dissipative dust-ion-acoustic solitons. Physical Review E, 2003, 67, 056402.	2.1	139
4	Charged dust and shock phenomena in the Solar System. Nonlinear Processes in Geophysics, 2006, 13, 223-229.	1.3	123
5	Shock Melting of a Two-Dimensional Complex (Dusty) Plasma. Physical Review Letters, 2004, 92, 255004.	7.8	120
6	Ion Acoustic Solitons in Impurityâ€Containing Plasmas. Contributions To Plasma Physics, 1995, 35, 103-108.	1.1	98
7	Dusty plasma at the surface of the moon. Solar System Research, 2013, 47, 419-429.	0.7	80
8	Formation of structures in a dusty ionosphere. Journal of Experimental and Theoretical Physics, 2005, 100, 152-164.	0.9	76
9	Shock waves in charge-varying dusty plasmas and the effect of electromagnetic radiation. Physics of Plasmas, 2000, 7, 2410-2416.	1.9	75
10	Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems. Planetary and Space Science, 2018, 156, 71-84.	1.7	73
11	Modulational Interactions in Plasmas. Astrophysics and Space Science Library, 1995, , .	2.7	68
12	Dust particle charging and formation of dust structures in the upper atmosphere. JETP Letters, 2000, 72, 364-368.	1.4	58
13	Weakly dissipative dust-ion-acoustic solitons in complex plasmas and the effect of electromagnetic radiation. Physics of Plasmas, 2012, 19, .	1.9	57
14	Dust ion-acoustic shock-wave structures: Theory and laboratory experiments. JETP Letters, 2001, 74, 362-366.	1.4	51
15	Ion-acoustic solitons in dusty plasma. Plasma Physics Reports, 2012, 38, 729-742.	0.9	51
16	On the distributions of photoelectrons over the illuminated part of the moon. JETP Letters, 2014, 99, 115-120.	1.4	50
17	Shock Structures in Plasmas Containing Variable-Charge Macro Particles. Astrophysics and Space Science, 1997, 256, 107-123.	1.4	49
18	Evolution of weakly dissipative hybrid dust ion-acoustic solitons in complex plasmas. Physics of Plasmas, 2009, 16 , .	1.9	49

#	Article	IF	CITATIONS
19	Dissipative processes during the propagation of nonlinear dust ion-acoustic perturbations. Plasma Physics Reports, 2004, 30, 284-298.	0.9	48
20	Solitons in Earth's dusty mesosphere. Advances in Space Research, 2006, 37, 414-419.	2.6	47
21	Dusty plasma system in the surface layer of the illuminated part of the moon. JETP Letters, 2012, 95, 182-187.	1.4	46
22	Dissipative processes and dust ion-acoustic shocks in a Q machine device. Physics of Plasmas, 2005, 12, 054501.	1.9	43
23	Phenomena associated with complex (dusty) plasmas in the ionosphere during high-speed meteor showers. Physics of Plasmas, 2009, 16, .	1.9	43
24	Dusty plasma sheath-like structure in the region of lunar terminator. Physics of Plasmas, 2015, 22, .	1.9	42
25	The effect of microscopic charged particulates in space weather. Journal Physics D: Applied Physics, 2011, 44, 174036.	2.8	41
26	Theory of modulational interactions in plasmas in the presence of an external magnetic field. Physics Reports, 1995, 259, 327-404.	25.6	40
27	Shocks in Space Dusty Plasmas. Astrophysics and Space Science, 1998, 264, 219-226.	1.4	40
28	Electrostatic solitons in an electron–positron plasma with two distinct groups of positrons. Journal of Plasma Physics, 1996, 55, 209-217.	2.1	36
29	Evolution of perturbation in charge-varying dusty plasmas. Physics of Plasmas, 2001, 8, 1497-1504.	1.9	36
30	Localized structures of nanosize charged dust grains in Earth's middle atmosphere. Planetary and Space Science, 2004, 52, 1187-1194.	1.7	35
31	Impacts of fast meteoroids and the separation of dust particles from the surface of the Moon. JETP Letters, 2016, 103, 563-567.	1.4	35
32	Dust Ion-Acoustic Shocks in a Q Machine Device. Contributions To Plasma Physics, 2005, 45, 461-475.	1.1	34
33	Ambipolar diffusion in complex plasma. Physical Review E, 2007, 75, 046403.	2.1	34
34	Modulational interaction of short-wavelength ion-acoustic oscillations in impurity-containing plasmas. Physical Review E, 1994, 50, 3060-3067.	2.1	33
35	Waves in a dusty plasma over the illuminated part of the Moon. Journal of Plasma Physics, 2013, 79, 1071-1074.	2.1	32
36	Dust acoustic solitons in the dusty plasma of the Earth's ionosphere. Plasma Physics Reports, 2005, 31, 198-205.	0.9	28

#	Article	IF	Citations
37	Fully nonlinear electrostatic waves in electron–positron plasmas. Journal of Plasma Physics, 2010, 76, 267-275.	2.1	28
38	Wave processes during the interaction of the Earth's magnetotail with dusty plasma near the lunar surface. Plasma Physics Reports, 2017, 43, 566-575.	0.9	27
39	Effect of the solar wind on the formation of a photoinduced dusty plasma layer near the surface of the Moon. JETP Letters, 2014, 98, 664-669.	1.4	26
40	Formation and evolution of dusty plasma structures in the ionosphere. JETP Letters, 2012, 96, 21-26.	1.4	24
41	Modulational instability of Langmuir wave packets. Physics of Plasmas, 1994, 1, 2176-2188.	1.9	23
42	Impacts of fast meteoroids and a plasma–dust cloud over the lunar surface. JETP Letters, 2017, 105, 635-640.	1.4	23
43	Lunar Dust: Properties and Potential Hazards. Solar System Research, 2020, 54, 455-476.	0.7	23
44	Wave processes in dusty plasma near the Moon's surface. Plasma Physics Reports, 2015, 41, 799-807.	0.9	22
45	Dust Ion–Acoustic Shock Waves in Laboratory, Ionospheric, and Astrophysical Plasmas. Plasma Physics Reports, 2020, 46, 1089-1107.	0.9	22
46	Lunar Dust: Properties and Investigation Techniques. Solar System Research, 2017, 51, 611-622.	0.7	21
47	Future lunar missions and investigation of dusty plasma processes on the Moon. Journal of Plasma Physics, 2013, 79, 405-411.	2.1	20
48	Threshold Energy Density of Lower Hybrid Waves in the Freja Experiment. Plasma Physics Reports, 2001, 27, 448-450.	0.9	19
49	Modulational excitation of low-frequency dust acoustic waves in the Earth's lower ionosphere. Plasma Physics Reports, 2007, 33, 289-301.	0.9	19
50	Theory of modulational interactions in collisional plasmas. Physica Scripta, 1994, 50, 161-180.	2.5	17
51	Dusty plasmas over the Moon. Journal of Plasma Physics, 2014, 80, 885-893.	2.1	17
52	Dusty Plasma at the Moon. Challenges of Modeling and Measurements. Plasma Physics Reports, 2020, 46, 527-540.	0.9	17
53	Lower-hybrid turbulence in the near-surface lunar dusty plasmas. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126627.	2.1	17
54	Plasma Effects in Dust Devils near the Martian Surface. Plasma Physics Reports, 2017, 43, 1172-1178.	0.9	16

#	Article	IF	CITATIONS
55	Numerical modelling of the Luna-Glob lander electric charging on the lunar surface with SPIS-DUST. Planetary and Space Science, 2018, 156, 62-70.	1.7	16
56	Dust dynamics in the lunar dusty plasmas: Effects of magnetic fields and dust charge variations. Physics of Plasmas, 2022, 29, .	1.9	15
57	Transient atmosphere generated by large meteoroid impacts onto an atmosphereless cosmic body: gasdynamic and physical processes. International Journal of Impact Engineering, 2002, 27, 521-534.	5. O	14
58	Nanoparticles in experiments on destruction of rocks by explosion. Doklady Earth Sciences, 2007, 415, 820-822.	0.7	14
59	Interaction of the Earth's Magnetotail With Dusty Plasma Near the Lunar Surface: Wave Processes and Turbulent Magnetic Reconnection. IEEE Transactions on Plasma Science, 2018, 46, 731-736.	1.3	14
60	Photoelectron distribution function over the illuminated part of the Moon. European Physical Journal D, 2014, 68, 1.	1.3	13
61	Formation and Evolution of Dusty Plasma Structures in the Ionospheres of the Earth and Mars. Plasma Physics Reports, 2019, 45, 928-935.	0.9	12
62	Dust Acoustic Solitons in Saturn's Dust-Filled Magnetosphere. Plasma Physics Reports, 2022, 48, 141-146.	0.9	12
63	Plasma equations in general relativity. Physics of Plasmas, 1997, 4, 2348-2356.	1.9	11
64	Dust Acoustic Mode Manifestations in Earth's Dusty Ionosphere. AIP Conference Proceedings, 2005, , .	0.4	11
65	Dusty plasma in the region of the lunar terminator. Plasma Physics Reports, 2016, 42, 543-548.	0.9	11
66	Formation of Dusty Plasma Clouds at Meteoroid Impact on the Surface of the Moon. JETP Letters, 2018, 108, 356-363.	1.4	11
67	Formation of shocks related to dust-particle charging in complex plasmas. JETP Letters, 2001, 73, 223-227.	1.4	10
68	Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface. Journal of Physics: Conference Series, 2015, 653, 012139.	0.4	10
69	Detection of impact-produced dust clouds near the lunar terminator. Planetary and Space Science, 2019, 177, 104689.	1.7	10
70	Finite amplitude waves in ion-beam plasma systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 190, 460-464.	2.1	9
71	Generation of infrasonic waves by low-frequency dust acoustic perturbations in the Earth's lower ionosphere. Plasma Physics Reports, 2008, 34, 471-479.	0.9	9
72	Nonlinear excitation of zonal flows and streamers in plasmas. Physics of Plasmas, 2011, 18, 052306.	1.9	9

#	Article	IF	CITATIONS
73	Modulational excitation of inhomogeneities in dusty ionospheric plasma. Plasma Physics Reports, 2015, 41, 171-177.	0.9	9
74	Charged Dust Motion in Dust Devils on Earth and Mars. Contributions To Plasma Physics, 2016, 56, 263-269.	1.1	9
75	Dusty plasma near the surface of phobos. JETP Letters, 2017, 106, 485-490.	1.4	9
76	Nonstationary Processes in the Formation of a Dusty Plasma near the Surface of Phobos. JETP Letters, 2021, 113, 428-432.	1.4	9
77	On the Fluxes of Dust Particles Detected near the Lunar Surface by the Chang'e 3 Lander. Solar System Research, 2021, 55, 389-397.	0.7	9
78	Modulational processes and limits of weak turbulence theory. Physical Review E, 1995, 51, 2390-2400.	2.1	8
79	Nano- and microscale particles and global electromagnetic resonances in the Earth-ionosphere cavity. Plasma Physics Reports, 2007, 33, 138-145.	0.9	8
80	Processes accompanying the charging of dust grains in the ionospheric plasma. Plasma Physics Reports, 2011, 37, 696-706.	0.9	8
81	Nonlinear acoustic-gravity waves and dust particle redistribution in earth's atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 41-46.	1.6	8
82	Nonlinear Wave Structures and Plasmaâ^'Dust Effects in the Earth's Atmosphere. Plasma Physics Reports, 2018, 44, 835-839.	0.9	8
83	Dusty Plasma near the Martian Satellite Deimos. Plasma Physics Reports, 2018, 44, 723-728.	0.9	8
84	Role of Collisions with Neutrals in the Process of Modulational Excitation of Dust Acoustic Perturbations in Dusty Ionosphere. Plasma Physics Reports, 2019, 45, 355-360.	0.9	8
85	Water Formation in the Lunar Regolith. Cosmic Research, 2019, 57, 79-84.	0.6	8
86	Dust Acoustic Solitons in the Plasma of the Dusty Exosphere of the Moon. Technical Physics Letters, 2021, 47, 455-458.	0.7	8
87	On the Evolution of Resonant Waves in Closed Plasma Systems. Contributions To Plasma Physics, 1993, 33, 1-5.	1.1	7
88	Modulational instability of Langmuir waves in dense plasmas. Physics of Fluids B, 1993, 5, 4109-4114.	1.7	7
89	Plasma-maser effect and evolution of resonant waves in turbulent plasmas. Physica Scripta, 1993, 47, 239-243.	2.5	7
90	Shock structure formation in dusty plasmas. Plasma Physics Reports, 2001, 27, 455-461.	0.9	7

#	Article	IF	Citations
91	Influence of electromagnetic radiation on the shock structure formation in complex plasmas. Plasma Physics Reports, 2001, 27, 785-793.	0.9	7
92	Variations of the Parameters of Internal Gravity Waves in the Atmosphere of Central Asia before Earthquakes. Doklady Earth Sciences, 2019, 487, 841-845.	0.7	7
93	Formation of Microspherules of Lunar Regolith in Plasma–Dust Processes Initiated by Meteoroid Impacts. Plasma Physics Reports, 2020, 46, 265-272.	0.9	7
94	On modulational interaction of lower-hybrid waves. Physica Scripta, 1992, 46, 65-71.	2.5	6
95	Physical aspects of the plasma-maser interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 184, 454-458.	2.1	6
96	Electromagnetic effects in the Earth's ionosphere and magnetosphere caused by a cosmic body. Planetary and Space Science, 1997, 45, 869-875.	1.7	6
97	Entropy and Entropy Production in Modulational Interaction. Transition from Weak to Strong Plasma Turbulence. Physica Scripta, 1998, 57, 272-275.	2.5	6
98	Formation of nano-and microspherules of minerals in ore deposits depending on depth of host rock occurrence. Geology of Ore Deposits, 2006, 48, 237-243.	0.7	6
99	Synoptic-scale cyclonic vortices and possible transport of fine particles from the troposphere into the stratosphere. Doklady Earth Sciences, 2008, 423, 1475-1478.	0.7	6
100	Properties of nano- and microparticles emitted into the environment from open-pit mining of iron deposits. Geology of Ore Deposits, 2010, 52, 373-380.	0.7	6
101	Experimental study of small-scale particles in atmospheric brown clouds. Doklady Earth Sciences, 2012, 447, 1317-1321.	0.7	6
102	Radiative forcing of aerosols in Central Asia. Doklady Earth Sciences, 2015, 460, 137-141.	0.7	6
103	Meteoroid impacts and dust particles in near-surface lunar exosphere. Journal of Physics: Conference Series, 2016, 774, 012175.	0.4	6
104	Electron Beam Action and High Charging of Dust Particles. IEEE Transactions on Plasma Science, 2018, 46, 701-703.	1.3	6
105	Dust-Acoustic Solitons in Dusty Ionospheric Plasma Containing Adiabatically Captured Electrons. Technical Physics Letters, 2019, 45, 1035-1038.	0.7	6
106	On the Plasma–Dust Processes Accompanying Meteor Showers. Plasma Physics Reports, 2020, 46, 1075-1088.	0.9	6
107	Shock Structures in Plasmas Containing Variable-Charge Macro Particles. , 1998, , 107-123.		6
108	A threeâ€circulation theorem for relativistic plasmas. Physics of Plasmas, 1996, 3, 482-489.	1.9	5

#	Article	IF	Citations
109	Plasma stochasticity and modulational interactions of waves associated with lower-hybrid resonance. Journal of Plasma Physics, 1997, 57, 363-371.	2.1	5
110	On the Nonlinear Processes During Generation of Current Drive. Contributions To Plasma Physics, 1992, 32, 77-84.	1.1	4
111	Modulational Interactions of Two Monochromatic Waves and Packets of Random Waves. Australian Journal of Physics, 1994, 47, 375.	0.6	4
112	Cavitation separation of nano-and microscale monomineral fractions from polymineral microparticles. Geology of Ore Deposits, 2007, 49, 201-207.	0.7	4
113	Dusty plasmas at Martian satellites. Journal of Physics: Conference Series, 2019, 1147, 012110.	0.4	4
114	Some aspects of modulational interaction in Earth's dusty ionosphere. Physics of Plasmas, 2021, 28, 033703.	1.9	4
115	Non-Stationary Processes during the Formation of Dusty Plasma at the Surface of Deimos, the Satellite of Mars. Plasma Physics Reports, 2021, 47, 826-831.	0.9	4
116	On the Question of Calculating the Parameters of Vortices in the Near-Surface Atmosphere of Mars. Solar System Research, 2019, 53, 423-430.	0.7	4
117	On the Possibility of Dust Acoustic Perturbations in Martian Ionosphere. Plasma Physics Reports, 2020, 46, 1205-1209.	0.9	4
118	Modified Kadomtsev–Petviashvili Equation for Description of Nonlinear Perturbations in Plasma of Dusty Lunar Exosphere. Plasma Physics Reports, 2022, 48, 361-366.	0.9	4
119	On Modulational Interaction of the Lowerâ€Hybrid Drift Oscillations. Contributions To Plasma Physics, 1994, 34, 5-18.	1.1	3
120	On Modulational Instability of Turbulent Spectra. Contributions To Plasma Physics, 1994, 34, 695-702.	1.1	3
121	Modulational excitation of drift waves by a beam of lowerâ€hybrid waves. Physics of Plasmas, 1996, 3, 571-577.	1.9	3
122	Shock Waves due to Grain harge Variation in Dusty Plasmas. Contributions To Plasma Physics, 1997, 37, 3-12.	1.1	3
123	Magnetic field perturbations correlated with large amplitude lower-hybrid waves in a high-voltage linear plasma discharge. Physics of Plasmas, 2003, 10, 2296-2303.	1.9	3
124	Complex (dusty) plasma in earth's environments. Physica Scripta, 2008, T131, 014044.	2.5	3
125	Ambipolar diffusion in a complex (dusty) plasma. Physica Scripta, 2008, T131, 014045.	2.5	3
126	Vortex motions and transportation of fine disperse dust particles in the ionosphere. Doklady Earth Sciences, 2009, 429, 1407-1410.	0.7	3

#	Article	IF	CITATIONS
127	Properties and origin of small particles in the atmosphere of Central Asia. Doklady Earth Sciences, 2016, 466, 177-182.	0.7	3
128	Experimental Study of Small-Scale Mineral Particles in the Atmosphere of Central Asia. Izvestiya, Physics of the Solid Earth, 2018, 54, 330-335.	0.9	3
129	Fluxes of Dust Particles in the Martian System. Technical Physics Letters, 2020, 46, 812-814.	0.7	3
130	Modulational Interaction in a Dusty Plasma of Meteoroid Wakes. Geomagnetism and Aeronomy, 2021, 61, 888-895.	0.8	3
131	Dust ion-acoustic solitons: Role of trapped electrons. AIP Conference Proceedings, 2002, , .	0.4	2
132	Shock wave-like structures in complex plasmas: Theory and experiments. AIP Conference Proceedings, 2002, , .	0.4	2
133	Quantum fluctuations, radiative-resonant interactions, and fast particles in plasmas., 2012,,.		2
134	Fine-dispersed particles in the natural and anthropogenic geosystems. Izvestiya, Physics of the Solid Earth, 2012, 48, 256-266.	0.9	2
135	Wave Processes in the Dusty Plasma at Phobos and Deimos. Plasma Physics Reports, 2019, 45, 855-862.	0.9	2
136	On dusty plasma formation in Martian ionosphere. Journal of Physics: Conference Series, 2020, 1556, 012072.	0.4	2
137	Electrophonic noises from meteors and dust acoustic modulational perturbations. Journal of Physics: Conference Series, 2021, 1787, 012052.	0.4	2
138	Shocks In Space Dusty Plasmas. , 1999, , 219-226.		2
139	Self-Organization in Dusty Plasmas. , 2000, , 123-134.		2
140	Lifting of Dust Particles under the Action of Laser Radiation on a Chondritic Target and the Possibility of Modeling Plasma–Dust Processes on the Lunar Surface. Technical Physics Letters, 2020, 46, 1041-1044.	0.7	2
141	PmL Instrument Onboard Luna-25 Lander: Plasma–Dust Measurements in the Surface Exosphere. Solar System Research, 2021, 55, 576-587.	0.7	2
142	WKB-ansatz and description of modulational processes. Physica Scripta, 1996, 53, 92-96.	2.5	1
143	Shocks in Dusty Plasmas: Theory and Experiment. Physica Scripta, 2001, T89, 84.	2.5	1
144	Ponderomotive force of the low-frequency field and modulational instability of drift waves. Plasma Physics Reports, 2003, 29, 768-778.	0.9	1

#	Article	IF	Citations
145	Dusty Plasma Effects in Earth's Magnetosphere. AIP Conference Proceedings, 2011, , .	0.4	1
146	Dusty plasma processes in Earth's polar summer mesosphere. Journal of Plasma Physics, 2013, 79, 383-385.	2.1	1
147	Dusty plasmas in the lunar exosphere: Effects of meteoroids. Journal of Physics: Conference Series, 2018, 946, 012142.	0.4	1
148	Characteristics of Internal Gravity Waves and Earthquake Prediction. Doklady Earth Sciences, 2020, 493, 632-635.	0.7	1
149	On the Possibility of Excitation of Oscillations in a Schumann Resonator on Mars. Plasma Physics Reports, 2020, 46, 65-70.	0.9	1
150	On a Possible Process for the Formation of Iron Oxide in the Lunar Regolith. Solar System Research, 2021, 55, 309-314.	0.7	1
151	Stochastic properties of the modulational interaction in packets of random waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 200, 156-159.	2.1	O
152	Bounded and Inhomogeneous Plasmas in External Magnetic Field. Astrophysics and Space Science Library, 1995, , 275-326.	2.7	0
153	Dust Ion-Acoustic Shock Structures. Physica Scripta, 2004, , 105.	2.5	0
154	Dusty plasma processes in Earth's environments containing nano- and microscale grains. Journal of Plasma Physics, 2010, 76, 525-537.	2.1	0
155	Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere. , 2010, , .		0
156	Weakly Dissipative Dust Ion-Acoustic Solitons in the Presence of Electromagnetic Radiation. AIP Conference Proceedings, $2011, \ldots$	0.4	0
157	On Influence of Neutrals on Dust Particle Charging in Complex Plasmas in the Presence of Electromagnetic Radiation. AIP Conference Proceedings, $2011, \ldots$	0.4	0
158	Vortices and Dust Streamers in Earth's Ionosphere. , 2011, , .		0
159	On Limiting Values of Dust Charges in Complex Plasmas. , 2011, , .		0
160	Tropospheric Response to Modulational Excitation of Dust Acoustic Perturbartions in Earth's lonosphere. , $2011, \ldots$		0
161	Model of Sedimentation of Submicron Charged Particles in Earth's Ionosphere. , 2011, , .		0
162	Complex (Dusty) Plasma Processes in Heliogeophysics. AIP Conference Proceedings, 2011, , .	0.4	0

#	Article	IF	CITATIONS
163	Solitary waves and vortices in plasmas with nanoparticles. , 2012, , .		O
164	Nanoscale particles in technological processes of beneficiation. Beilstein Journal of Nanotechnology, 2014, 5, 458-465.	2.8	0
165	Dusty plasma interactions near the Moon and in the system of Mars. Proceedings of the International Astronomical Union, 2018, 14, 389-390.	0.0	0
166	Dusty Plasmas over Hydrogen-Rich Areas of Lunar Surface. , 2019, , .		0
167	Dusty Plasmas in the System of Mars: Review of Recent Theoretical Research at the Space Research Institute RAS., 2019,,.		0
168	Electric field influence on dust particle dynamics in dust vortices. Journal of Physics: Conference Series, 2020, 1556, 012071.	0.4	0
169	Dusty plasmas at the Moon: Effects of magnetic fields. Journal of Physics: Conference Series, 2021, 1787, 012051.	0.4	0
170	Dusty plasma environment near lunar surface. Journal of Physics: Conference Series, 2021, 1787, 012050.	0.4	0
171	Shock Waves in Plasmas Containing Dust Particles. , 2000, , 397-400.		0
172	Fine Particles and Nonlinear Processes in Plasma Heliogeophysics. Thirty Years of Astronomical Discovery With UKIRT, 2012, , 197-208.	0.3	0
173	Excitation of Magnetic Fields. Astrophysics and Space Science Library, 1995, , 205-227.	2.7	0
174	Instabilities in Collisional Plasmas. Astrophysics and Space Science Library, 1995, , 327-381.	2.7	0
175	Modulational Interaction of Potential Electric Fields. Astrophysics and Space Science Library, 1995, , 55-118.	2.7	0
176	Higher Nonlinearities. Astrophysics and Space Science Library, 1995, , 119-159.	2.7	0
177	Entropy and Entropy Production in Transition from Weak to Strong Turbulent Plasma State. , 1998, , 269-272.		0
178	Modulational Interaction And Formation Of Coherent Structures In The Magnetosphere. , 1999 , , $693-698$.		0
179	Dusty plasma effects in the atmosphere of Mars and near the Martian Surface. Proceedings of the International Astronomical Union, 2018, 14, 411-412.	0.0	О
180	Dust Particle Dynamics in Convective Vortices Near the Surface of the Earth: Comparison with Mars. Springer Proceedings in Earth and Environmental Sciences, 2019, , 507-514.	0.4	O