Tetiana I Bogdanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/56936/publications.pdf

Version: 2024-02-01

686830 752256 23 897 13 20 h-index g-index citations papers 23 23 23 1311 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Papillary Thyroid Carcinoma in Ukraine After Chernobyl and in Japan After Fukushima: Different Histopathological Scenarios. Thyroid, 2021, 31, 1322-1334.	2.4	14
2	Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science, 2021, 372, .	6.0	85
3	The BRAFV600E Mutation Is Not a Risk Factor for More Aggressive Tumor Behavior in Radiogenic and Sporadic Papillary Thyroid Carcinoma at a Young Age. Cancers, 2021, 13, 6038.	1.7	11
4	Histopathological analysis of papillary thyroid carcinoma detected during ultrasound screening examinations in Fukushima. Cancer Science, 2019, 110, 817-827.	1.7	26
5	Pathology of Radiation-Induced Thyroid Cancer: Lessons from Chernobyl Thyroid Cancer Study. , 2019, , 549-563.		4
6	Anaplastic lymphoma kinase (<i>ALK</i>) gene rearrangements in radiationâ€related human papillary thyroid carcinoma after the Chernobyl accident. Journal of Pathology: Clinical Research, 2018, 4, 175-183.	1.3	10
7	Investigation of the Relationship Between Radiation Dose and Gene Mutations and Fusions in Post-Chernobyl Thyroid Cancer. Journal of the National Cancer Institute, 2018, 110, 371-378.	3.0	52
8	Comparative Histopathologic Analysis of "Radiogenic―and "Sporadic―Papillary Thyroid Carcinoma: Patients Born Before and After the Chernobyl Accident. Thyroid, 2018, 28, 880-890.	2.4	16
9	Long-Term Analysis of the Incidence and Histopathology of Thyroid Cancer in Ukraine in Adult Patients Who Were Children and Adolescents at the Time of the Chernobyl Accident. , 2017, , 67-76.		3
10	Thyroid Cancer Risk in Ukraine Following the Chernobyl Accident (The Ukrainian–American Cohort) Tj ETQq0 () 0 rgBT /0	Overlock 10 Tf
11	Thyroid neoplasia risk is increased nearly 30 years after the Chernobyl accident. International Journal of Cancer, 2017, 141, 1585-1588.	2.3	53
12	Comparative histopathological analysis of sporadic pediatric papillary thyroid carcinoma from Japan and Ukraine. Endocrine Journal, 2017, 64, 977-993.	0.7	10
13	Targeted Foxe1 Overexpression in Mouse Thyroid Causes the Development of Multinodular Goiter But Does Not Promote Carcinogenesis. Endocrinology, 2016, 157, 2182-2195.	1.4	11
14	Gene signature of the post-Chernobyl papillary thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1267-1277.	3.3	61
15	The Common Genetic Variant rs944289 on Chromosome 14q13.3 Associates with Risk of Both Malignant and Benign Thyroid Tumors in the Japanese Population. Thyroid, 2015, 25, 333-340.	2.4	36
16	Histopathological features of papillary thyroid carcinomas detected during four screening examinations of a Ukrainian-American cohort. British Journal of Cancer, 2015, 113, 1556-1564.	2.9	29
17	Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort. Carcinogenesis, 2015, 36, 1381-1387.	1.3	11
18	ETV6â€NTRK3 is a common chromosomal rearrangement in radiationâ€associated thyroid cancer. Cancer, 2014, 120, 799-807.	2.0	231

#	Article	IF	CITATIONS
19	Age Distribution of Childhood Thyroid Cancer Patients in Ukraine After Chernobyl and in Fukushima After the TEPCO-Fukushima Daiichi NPP Accident. Thyroid, 2014, 24, 1547-1548.	2.4	21
20	Impact of Uncertainties in Exposure Assessment on Estimates of Thyroid Cancer Risk among Ukrainian Children and Adolescents Exposed from the Chernobyl Accident. PLoS ONE, 2014, 9, e85723.	1.1	44
21	<i>RET/PTC</i> and <i>PAX8/PPAR</i> î³ chromosomal rearrangements in postâ€Chernobyl thyroid cancer and their association with iodineâ€131 radiation dose and other characteristics. Cancer, 2013, 119, 1792-1799.	2.0	99
22	Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine–US Thyroid) Tj ETQq0	0 0 rgBT / 0.6	Overlock 10
23	lodine-131 Dose Dependent Gene Expression in Thyroid Cancers and Corresponding Normal Tissues Following the Chernobyl Accident. PLoS ONE, 2012, 7, e39103.	1.1	47