
Avi Ashkenazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5693433/publications.pdf Version: 2024-02-01

Δνι Δεμκενιαζι

#	Article	IF	CITATIONS
1	Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay. Nature Communications, 2022, 13, 1587.	5.8	11
2	Steroid-induced fibroblast growth factors drive an epithelial-mesenchymal inflammatory axis in severe asthma. Science Translational Medicine, 2022, 14, eabl8146.	5.8	2
3	Antigen-derived peptides engage the ER stress sensor IRE1Î \pm to curb dendritic cell cross-presentation. Journal of Cell Biology, 2022, 221, .	2.3	17
4	Neuronal regulated ire-1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans. ELife, 2021, 10, .	2.8	7
5	The stress-sensing domain of activated IRE1α forms helical filaments in narrow ER membrane tubes. Science, 2021, 374, 52-57.	6.0	24
6	Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE11±. Nature Communications, 2021, 12, 7310.	5.8	24
7	Identification of BRaf-Sparing Amino-Thienopyrimidines with Potent IRE11± Inhibitory Activity. ACS Medicinal Chemistry Letters, 2020, 11, 2389-2396.	1.3	6
8	Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands. Nature Communications, 2020, 11, 6387.	5.8	24
9	IRE11± Disruption in Triple-Negative Breast Cancer Cooperates with Antiangiogenic Therapy by Reversing ER Stress Adaptation and Remodeling the Tumor Microenvironment. Cancer Research, 2020, 80, 2368-2379.	0.4	44
10	Misfolded proteins bind and activate death receptor 5 to trigger apoptosis during unresolved endoplasmic reticulum stress. ELife, 2020, 9, .	2.8	70
11	Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members. MAbs, 2019, 11, 996-1011.	2.6	28
12	Disruption of IRE1α through its kinase domain attenuates multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16420-16429.	3.3	78
13	Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. ELife, 2019, 8, .	2.8	35
14	Confirming a critical role for death receptor 5 and caspase-8 in apoptosis induction by endoplasmic reticulum stress. Cell Death and Differentiation, 2018, 25, 1530-1531.	5.0	30
15	Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate. Molecular Cell, 2018, 71, 629-636.e5.	4.5	131
16	From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nature Reviews Drug Discovery, 2017, 16, 273-284.	21.5	651
17	Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death. Molecular and Cellular Proteomics, 2016, 15, 2293-2307.	2.5	7
18	Antitherapeutic antibody-mediated hepatotoxicity of recombinant human Apo2L/TRAIL in the cynomolgus monkey. Cell Death and Disease, 2016, 7, e2338-e2338.	2.7	13

#	Article	IF	CITATIONS
19	Membrane display and functional analysis of juxtacrine ligand-receptor signaling. BioTechniques, 2015, 59, 231-8, 240.	0.8	1
20	Enhancing the antitumor efficacy of a cell-surface death ligand by covalent membrane display. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5679-5684.	3.3	73
21	MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation. EBioMedicine, 2015, 2, 406-420.	2.7	12
22	Dulanermin with rituximab in patients with relapsed indolent B-cell lymphoma: an open-label phase 1b/2 randomised study. Lancet Haematology,the, 2015, 2, e166-e174.	2.2	36
23	TRAF2 is a biologically important necroptosis suppressor. Cell Death and Differentiation, 2015, 22, 1846-1857.	5.0	76
24	Redesigning a Monospecific Anti-FGFR3 Antibody to Add Selectivity for FGFR2 and Expand Antitumor Activity. Molecular Cancer Therapeutics, 2015, 14, 2270-2278.	1.9	6
25	Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. Journal of Clinical Investigation, 2015, 125, 487-489.	3.9	209
26	MMP-1 and Pro-MMP-10 as Potential Urinary Pharmacodynamic Biomarkers of FGFR3-Targeted Therapy in Patients with Bladder Cancer. Clinical Cancer Research, 2014, 20, 6324-6335.	3.2	20
27	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	13.7	23
28	Regulated Cell Death: Signaling and Mechanisms. Annual Review of Cell and Developmental Biology, 2014, 30, 337-356.	4.0	212
29	Designer Proteins to Trigger Cell Death. Cell, 2014, 157, 1506-1508.	13.5	5
30	Apoptosis Initiation Through the Cell-Extrinsic Pathway. Methods in Enzymology, 2014, 544, 99-128.	0.4	78
31	Preface. Methods in Enzymology, 2014, 544, xv.	0.4	1
32	Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science, 2014, 345, 98-101.	6.0	465
33	AXL Inhibition Sensitizes Mesenchymal Cancer Cells to Antimitotic Drugs. Cancer Research, 2014, 74, 5878-5890.	0.4	137
34	Inflammasome-Dependent and -Independent IL-18 Production Mediates Immunity to the ISCOMATRIX Adjuvant. Journal of Immunology, 2014, 192, 3259-3268.	0.4	69
35	E-Cadherin Couples Death Receptors to the Cytoskeleton to Regulate Apoptosis. Molecular Cell, 2014, 54, 987-998.	4.5	88
36	Abstract 693: AXL tyrosine kinase inhibition selectively sensitizes mesenchymal cancer cells to antimitotic agents. , 2014, , .		1

#	Article	IF	CITATIONS
37	Abstract 3690: MMP-1 and pro-MMP-10 as potential urinary pharmacodynamic biomarkers of FGFR3-targeted therapy in patients with bladder cancer. , 2014, , .		0
38	A Phase 1B Study of Dulanermin in Combination With Modified FOLFOX6 Plus Bevacizumab in Patients With Metastatic Colorectal Cancer. Clinical Colorectal Cancer, 2013, 12, 248-254.	1.0	48
39	ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models. Nuclear Medicine and Biology, 2013, 40, 15-22.	0.3	18
40	FOLFIRI plus dulanermin (rhApo2L/TRAIL) in a patient with BRAF-mutant metastatic colon cancer. Cancer Biology and Therapy, 2013, 14, 711-719.	1.5	11
41	Host genetic background impacts modulation of the TLR4 pathway by RON in tissueâ€associated macrophages. Immunology and Cell Biology, 2013, 91, 451-460.	1.0	24
42	FcÎ ³ receptors enable anticancer action of proapoptotic and immune-modulatory antibodies. Journal of Experimental Medicine, 2013, 210, 1647-1651.	4.2	34
43	Fibroblast Growth Factor Receptor 3 Is a Rational Therapeutic Target in Bladder Cancer. Molecular Cancer Therapeutics, 2013, 12, 1245-1254.	1.9	79
44	Pharmacological brake-release of mRNA translation enhances cognitive memory. ELife, 2013, 2, e00498.	2.8	541
45	Abstract 4463: Activation of FGFR signaling as a mechanism of acquired resistance to erlotinib in EGFR-mutant lung cancer associated with an EMT , 2013, , .		0
46	Targeting the Apoptotic Pathway in Chondrosarcoma Using Recombinant Human Apo2L/TRAIL (Dulanermin), a Dual Proapoptotic Receptor (DR4/DR5) Agonist. Molecular Cancer Therapeutics, 2012, 11, 2541-2546.	1.9	53
47	FGFR3 Stimulates Stearoyl CoA Desaturase 1 Activity to Promote Bladder Tumor Growth. Cancer Research, 2012, 72, 5843-5855.	0.4	73
48	Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events. Journal of Proteome Research, 2012, 11, 2947-2954.	1.8	23
49	TRAF2 Sets a Threshold for Extrinsic Apoptosis by Tagging Caspase-8 with a Ubiquitin Shutoff Timer. Molecular Cell, 2012, 48, 888-899.	4.5	133
50	ISCOMATRIX vaccines mediate CD8 ⁺ Tâ€cell crossâ€priming by a MyD88â€dependent signaling pathway. Immunology and Cell Biology, 2012, 90, 540-552.	1.0	92
51	Targeting FGFR4 Inhibits Hepatocellular Carcinoma in Preclinical Mouse Models. PLoS ONE, 2012, 7, e36713.	1.1	179
52	Proapoptotic Activation of Death Receptor 5 on Tumor Endothelial Cells Disrupts the Vasculature and Reduces Tumor Growth. Cancer Cell, 2012, 22, 80-90.	7.7	55
53	NEMO and RIP1 Control Cell Fate in Response to Extensive DNA Damage via TNF-α Feedforward Signaling. Cell, 2011, 145, 92-103.	13.5	235
54	SnapShot: Caspases. Cell, 2011, 147, 476-476.e1.	13.5	46

#	Article	IF	CITATIONS
55	SnapShot: Caspases. Cell, 2011, 147, 1197.	13.5	1
56	An FcÎ ³ Receptor-Dependent Mechanism Drives Antibody-Mediated Target-Receptor Signaling inÂCancer Cells. Cancer Cell, 2011, 19, 101-113.	7.7	247
57	Randomized Phase II Study of Dulanermin in Combination With Paclitaxel, Carboplatin, and Bevacizumab in Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2011, 29, 4442-4451.	0.8	227
58	Distinct Involvement of the Gab1 and Grb2 Adaptor Proteins in Signal Transduction by the Related Receptor Tyrosine Kinases RON and MET. Journal of Biological Chemistry, 2011, 286, 32762-32774.	1.6	21
59	TWEAK Induces Apoptosis through a Death-signaling Complex Comprising Receptor-interacting Protein 1 (RIP1), Fas-associated Death Domain (FADD), and Caspase-8. Journal of Biological Chemistry, 2011, 286, 21546-21554.	1.6	81
60	The zebrafish as a model organism for the study of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 331-349.	2.2	120
61	Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Current Opinion in Cell Biology, 2010, 22, 837-844.	2.6	130
62	New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene, 2010, 29, 4752-4765.	2.6	314
63	Development of Immunohistochemistry Assays to Assess GALNT14 and FUT3/6 in Clinical Trials of Dulanermin and Drozitumab. Clinical Cancer Research, 2010, 16, 1587-1596.	3.2	37
64	Phase I Dose-Escalation Study of Recombinant Human Apo2L/TRAIL, a Dual Proapoptotic Receptor Agonist, in Patients With Advanced Cancer. Journal of Clinical Oncology, 2010, 28, 2839-2846.	0.8	394
65	A Phase I Safety and Pharmacokinetic Study of the Death Receptor 5 Agonistic Antibody PRO95780 in Patients with Advanced Malignancies. Clinical Cancer Research, 2010, 16, 1256-1263.	3.2	154
66	UNCovering the Molecular Machinery of Dependence Receptor Signaling. Molecular Cell, 2010, 40, 851-853.	4.5	4
67	X Chromosome-linked Inhibitor of Apoptosis Regulates Cell Death Induction by Proapoptotic Receptor Agonists. Journal of Biological Chemistry, 2009, 284, 34553-34560.	1.6	51
68	Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology, 2009, 10, 348-355.	7.0	484
69	Cullin3-Based Polyubiquitination and p62-Dependent Aggregation of Caspase-8 Mediate Extrinsic Apoptosis Signaling. Cell, 2009, 137, 721-735.	13.5	559
70	Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. Journal of Clinical Investigation, 2009, 119, 1216-1229.	3.9	215
71	Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene, 2008, 27, 85-97.	2.6	233
72	Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature Reviews Drug Discovery, 2008, 7, 1001-1012.	21.5	374

#	Article	IF	CITATIONS
73	Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death and Differentiation, 2008, 15, 751-761.	5.0	132
74	Ligand-Based Targeting of Apoptosis in Cancer: The Potential of Recombinant Human Apoptosis Ligand 2/Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (rhApo2L/TRAIL). Journal of Clinical Oncology, 2008, 26, 3621-3630.	0.8	386
75	Targeting the extrinsic apoptosis pathway in cancer. Cytokine and Growth Factor Reviews, 2008, 19, 325-331.	3.2	361
76	Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake. Molecular Cancer Therapeutics, 2008, 7, 2599-2608.	1.9	36
77	Cooperation of the Agonistic DR5 Antibody Apomab with Chemotherapy to Inhibit Orthotopic Lung Tumor Growth and Improve Survival. Clinical Cancer Research, 2008, 14, 7733-7740.	3.2	53
78	To kill a tumor cell: the potential of proapoptotic receptor agonists. Journal of Clinical Investigation, 2008, 118, 1979-1990.	3.9	282
79	Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood, 2007, 110, 4037-4046.	0.6	94
80	Secreted Sulfatases Sulf1 and Sulf2 Have Overlapping yet Essential Roles in Mouse Neonatal Survival. PLoS ONE, 2007, 2, e575.	1.1	114
81	Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nature Medicine, 2007, 13, 1070-1077.	15.2	542
82	Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Therapy, 2007, 14, 147-161.	2.3	26
83	Activation of the Proapoptotic Death Receptor DR5 by Oligomeric Peptide and Antibody Agonists. Journal of Molecular Biology, 2006, 361, 522-536.	2.0	51
84	Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death and Differentiation, 2006, 13, 1619-1630.	5.0	97
85	Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death and Differentiation, 2006, 13, 1631-1640.	5.0	127
86	Death-receptor activation halts clathrin-dependent endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10283-10288.	3.3	98
87	TNFâ€related apoptosisâ€inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice. Immunology and Cell Biology, 2005, 83, 511-519.	1.0	61
88	Toward small-molecule agonists of TNF receptors. Nature Chemical Biology, 2005, 1, 353-354.	3.9	4
89	Receptor-selective Mutants of Apoptosis-inducing Ligand 2/Tumor Necrosis Factor-related Apoptosis-inducing Ligand Reveal a Greater Contribution of Death Receptor (DR) 5 than DR4 to Apoptosis Signaling. Journal of Biological Chemistry, 2005, 280, 2205-2212.	1.6	237
90	Selective Knockdown of the Long Variant of Cellular FLICE Inhibitory Protein Augments Death Receptor-mediated Caspase-8 Activation and Apoptosis. Journal of Biological Chemistry, 2005, 280, 19401-19409.	1.6	141

#	Article	IF	CITATIONS
91	Molecular Determinants of Kinase Pathway Activation by Apo2 Ligand/Tumor Necrosis Factor-related Apoptosis-inducing Ligand. Journal of Biological Chemistry, 2005, 280, 40599-40608.	1.6	243
92	TWEAK Attenuates the Transition from Innate to Adaptive Immunity. Cell, 2005, 123, 931-944.	13.5	221
93	APRIL-Deficient Mice Have Normal Immune System Development. Molecular and Cellular Biology, 2004, 24, 997-1006.	1.1	170
94	Apo2 Ligand/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Cooperates with Chemotherapy to Inhibit Orthotopic Lung Tumor Growth and Improve Survival. Cancer Research, 2004, 64, 4900-4905.	0.4	108
95	Elimination of Hepatic Metastases of Colon Cancer Cells via p53-Independent Cross-Talk between Irinotecan and Apo2 Ligand/TRAIL. Cancer Research, 2004, 64, 9105-9114.	0.4	66
96	Targeting death receptors in cancer with Apo2L/TRAIL. Current Opinion in Pharmacology, 2004, 4, 333-339.	1.7	336
97	Tumor Necrosis Factor. Cell, 2004, 116, 491-497.	13.5	478
98	Apo2L/TRAIL and its death and decoy receptors. Cell Death and Differentiation, 2003, 10, 66-75.	5.0	814
99	Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews, 2003, 14, 337-348.	3.2	515
100	Design, Construction, and In Vitro Analyses of Multivalent Antibodies. Journal of Immunology, 2003, 170, 4854-4861.	0.4	57
101	Regulation of Apo2L/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Thyroid Carcinoma Cells. American Journal of Pathology, 2002, 161, 643-654.	1.9	70
102	Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Medicine, 2002, 8, 274-281.	15.2	497
103	Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer, 2002, 2, 420-430.	12.8	1,215
104	Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Medicine, 2001, 7, 383-385.	15.2	686
105	TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nature Immunology, 2001, 2, 632-637.	7.0	199
106	Isotype-Dependent Inhibition of Tumor Growth In Vivo by Monoclonal Antibodies to Death Receptor 4. Journal of Immunology, 2001, 166, 4891-4898.	0.4	213
107	Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8. Journal of Biological Chemistry, 2001, 276, 46639-46646.	1.6	434
108	Lipopolysaccharide Induces Expression of APO2 Ligand/TRAIL in Human Monocytes and Macrophages. Scandinavian Journal of Immunology, 2000, 51, 244-250.	1.3	92

#	Article	IF	CITATIONS
109	Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunology, 2000, 1, 37-41.	7.0	223
110	Response to 'Secreted IgM versus BLyS in germinal center formation'. Nature Immunology, 2000, 1, 179-179.	7.0	0
111	Combining Enhanced Metabolic Labeling with Immunoblotting to Detect Interactions of Endogenous Cellular Proteins. BioTechniques, 2000, 29, 506-512.	0.8	1
112	Apo2L/TRAIL-Dependent Recruitment of Endogenous FADD and Caspase-8 to Death Receptors 4 and 5. Immunity, 2000, 12, 611-620.	6.6	908
113	Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Current Biology, 2000, 10, 785-788.	1.8	380
114	A Unique Zinc-Binding Site Revealed by a High-Resolution X-ray Structure of Homotrimeric Apo2L/TRAIL. Biochemistry, 2000, 39, 633-640.	1.2	262
115	Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology, 1999, 11, 255-260.	2.6	1,205
116	Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Current Biology, 1999, 9, 215-218.	1.8	178
117	Triggering Cell Death. Molecular Cell, 1999, 4, 563-571.	4.5	412
118	Safety and antitumor activity of recombinant soluble Apo2 ligand. Journal of Clinical Investigation, 1999, 104, 155-162.	3.9	1,976
119	Locoregional Apo2L/TRAIL Eradicates Intracranial Human Malignant Glioma Xenografts in Athymic Mice in the Absence of Neurotoxicity. Biochemical and Biophysical Research Communications, 1999, 265, 479-483.	1.0	197
120	REGULATION OF APO-2 LIGAND/TRAIL EXPRESSION IN NK CELLS—INVOLVEMENT IN NK CELL-MEDIATED CYTOTOXICITY. Cytokine, 1999, 11, 664-672.	1.4	83
121	Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 1998, 396, 699-703.	13.7	735
122	Identification of a ligand for the death-domain-containing receptor Apo3. Current Biology, 1998, 8, 525-52.	1.8	186
123	Death Receptors: Signaling and Modulation. , 1998, 281, 1305-1308.		5,030
124	APO2 ligand: a novel lethal weapon against malignant glioma?. FEBS Letters, 1998, 427, 124-128.	1.3	164
125	Herpesvirus Entry Mediator, a Member of the Tumor Necrosis Factor Receptor (TNFR) Family, Interacts with Members of the TNFR-associated Factor Family and Activates the Transcription Factors NF-κB and AP-1. Journal of Biological Chemistry, 1997, 272, 14029-14032.	1.6	279
126	Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors. Science, 1997, 277, 818-821.	6.0	1,593

#	Article	IF	CITATIONS
127	A novel receptor for Apo2L/TRAIL contains a truncated death domain. Current Biology, 1997, 7, 1003-1006.	1.8	611
128	Immunoadhesins as research tools and therapeutic agents. Current Opinion in Immunology, 1997, 9, 195-200.	2.4	73
129	Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. Journal of Biological Chemistry, 1996, 271, 12687-12690.	1.6	1,587
130	Ligand-Induced Assembly and Activation of the Gamma Interferon Receptor in Intact Cells. Molecular and Cellular Biology, 1996, 16, 3214-3221.	1.1	126
131	Immunoadhesins: principles and applications. Trends in Biotechnology, 1996, 14, 52-60.	4.9	94
132	Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-κB. Current Biology, 1996, 6, 1669-1676.	1.8	244
133	Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Current Biology, 1996, 6, 750-752.	1.8	195
134	Interferon gamma signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5401-5405.	3.3	89
135	A Humanized, Bispecific Immunoadhesin-Antibody that Retargets CD3+ Effectors to Kill HIV-1-Infected Cells. Stem Cells and Development, 1995, 4, 439-446.	1.0	15
136	Immunoadhesins: An Alternative to Human Monoclonal Antibodies. Methods, 1995, 8, 104-115.	1.9	14
137	Ligand-Induced Autoregulation of IFN-gamma Receptor beta Chain Expression in T Helper Cell Subsets. Science, 1995, 270, 1215-1218.	6.0	199
138	The Third Intracellular Loop of the 5â€Hydroxytryptamine _{2A} Receptor Determines Effector Coupling Specificity. Journal of Neurochemistry, 1995, 64, 1440-1447.	2.1	16
139	Protection against endotoxic shock by bactericidal/permeability-increasing protein in rats Journal of Clinical Investigation, 1995, 95, 1947-1952.	3.9	29
140	Protection Against Rat Endotoxic Shock By p55 Tumor Necrosis Factor (TNF) Receptor Immunoadhesin: Comparison with Anti-TNF Monoclonal Antibody. Journal of Infectious Diseases, 1994, 170, 1323-1326.	1.9	37
141	Modification of CD4 Immunoadhesin with Monomethoxypoly(Ethylene Glycol) Aldehyde via Reductive Alkylation. Bioconjugate Chemistry, 1994, 5, 133-140.	1.8	45
142	Liposome targeting to human immunodeficiency virus type 1-infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-lgG). Biochimica Et Biophysica Acta - Biomembranes, 1994, 1194, 185-196.	1.4	29
143	Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage. Molecular Immunology, 1994, 31, 1335-1344.	1.0	17
144	Molecular and biological properties of an interleukin-1 receptor immunoadhesin. Molecular Immunology, 1994, 31, 1345-1351.	1.0	13

#	Article	IF	CITATIONS
145	Biochemical characterization of the extracellular domain of the 75-kilodalton tumor necrosis factor receptor. Biochemistry, 1993, 32, 3131-3138.	1.2	51
146	Immunoadhesins. International Reviews of Immunology, 1993, 10, 219-227.	1.5	45
147	Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. Journal of Biological Chemistry, 1993, 268, 26059-62.	1.6	93
148	A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature, 1992, 360, 161-163.	13.7	287
149	Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. Journal of Virology, 1992, 66, 235-243.	1.5	337
150	Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10535-10539.	3.3	259
151	Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7056-7060.	3.3	116
152	Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7150-7154.	3.3	181
153	Enzymic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. Biochemistry, 1990, 29, 9885-9891.	1.2	36
154	The MHC-binding and gp120-binding functions of CD4 are separable. Science, 1989, 245, 743-746.	6.0	155
155	Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature, 1989, 340, 146-150.	13.7	253
156	Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell, 1989, 56, 487-493.	13.5	274
157	Solubilization and characterization of lactogenic hormone receptor from kidney of lactating cow. Molecular and Cellular Endocrinology, 1989, 61, 77-85.	1.6	6
158	Inhibition of the proliferation of Nb2 cells by femtomolar concentrations of cholera toxin and partial reversal of the effect by 12-O-tetradecanoyl-phorbol-13-acetate. Journal of Cellular Biochemistry, 1988, 37, 119-129.	1.2	17
159	Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 1988, 334, 434-437.	13.7	669
160	An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science, 1987, 238, 672-675.	6.0	397
161	A Comparative Study of Lactogenic Hormone Binding Sites in the Adrenal Gland, Ovary and Kidney of the Lactating Cow. Journal of Receptors and Signal Transduction, 1987, 7, 921-936.	1.2	4
162	Partial purification and characterization of bovine mammary gland prolactin receptor. Molecular and Cellular Endocrinology, 1987, 50, 79-87.	1.6	15

#	Article	IF	CITATIONS
163	Characterization of lactogen receptors in lactogenic hormone-dependent and independent NB2 lymphoma cell lines. FEBS Letters, 1987, 210, 51-55.	1.3	24
164	Primary structure and biochemical properties of an M2 muscarinic receptor. Science, 1987, 236, 600-605.	6.0	514
165	Comparative Study of in Vitro and in Vivo Modulation of Lactogenic and Somatotropic Receptors by Native Human Growth Hormone and Its Modified Analog Prepared by Recombinant Deoxyribonucleic Acid Technology. Endocrinology, 1987, 121, 414-419.	1.4	25
166	Inhibition of Lactogenic Activities of Ovine Prolactin and Human Growth Hormone (hGH) by a Novel Form of a Modified Recombinant hGH*. Endocrinology, 1986, 118, 720-726.	1.4	46
167	Binding sites of human growth hormone and ovine and bovine prolactins in the mammary gland and the liver of lactating dairy cow. Molecular and Cellular Endocrinology, 1984, 34, 51-57.	1.6	94
168	Tnfsf10. The AFCS-nature Molecule Pages, 0, , .	0.2	0
169	Tnfrsf10. The AFCS-nature Molecule Pages, 0, , .	0.2	0
170	Endoplasmic reticulum stress activates human IRE1α through reversible assembly of inactive dimers into small oligomers. ELife, 0, 11, .	2.8	14