Avi Ashkenazi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5693433/publications.pdf

Version: 2024-02-01

170 papers 38,436 citations

85 h-index 162 g-index

184 all docs

184 docs citations

times ranked

184

27993 citing authors

#	Article	IF	CITATIONS
1	Death Receptors: Signaling and Modulation. , 1998, 281, 1305-1308.		5,030
2	Safety and antitumor activity of recombinant soluble Apo2 ligand. Journal of Clinical Investigation, 1999, 104, 155-162.	3.9	1,976
3	Control of TRAIL-Induced Apoptosis by a Family of Signaling and Decoy Receptors. Science, 1997, 277, 818-821.	6.0	1,593
4	Induction of Apoptosis by Apo-2 Ligand, a New Member of the Tumor Necrosis Factor Cytokine Family. Journal of Biological Chemistry, 1996, 271, 12687-12690.	1.6	1,587
5	Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Reviews Cancer, 2002, 2, 420-430.	12.8	1,215
6	Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology, 1999, 11, 255-260.	2.6	1,205
7	Apo2L/TRAIL-Dependent Recruitment of Endogenous FADD and Caspase-8 to Death Receptors 4 and 5. Immunity, 2000, 12, 611-620.	6.6	908
8	Apo2L/TRAIL and its death and decoy receptors. Cell Death and Differentiation, 2003, 10, 66-75.	5.0	814
9	Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature, 1998, 396, 699-703.	13.7	735
10	Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nature Medicine, 2001, 7, 383-385.	15.2	686
11	Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature, 1988, 334, 434-437.	13.7	669
12	From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nature Reviews Drug Discovery, 2017, 16, 273-284.	21.5	651
13	A novel receptor for Apo2L/TRAIL contains a truncated death domain. Current Biology, 1997, 7, 1003-1006.	1.8	611
14	Cullin3-Based Polyubiquitination and p62-Dependent Aggregation of Caspase-8 Mediate Extrinsic Apoptosis Signaling. Cell, 2009, 137, 721-735.	13.5	559
15	Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nature Medicine, 2007, 13, 1070-1077.	15.2	542
16	Pharmacological brake-release of mRNA translation enhances cognitive memory. ELife, 2013, 2, e00498.	2.8	541
17	Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine and Growth Factor Reviews, 2003, 14, 337-348.	3.2	515
18	Primary structure and biochemical properties of an M2 muscarinic receptor. Science, 1987, 236, 600-605.	6.0	514

#	Article	IF	CITATIONS
19	Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nature Medicine, 2002, 8, 274-281.	15.2	497
20	Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology, 2009, 10, 348-355.	7.0	484
21	Tumor Necrosis Factor. Cell, 2004, 116, 491-497.	13.5	478
22	Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science, 2014, 345, 98-101.	6.0	465
23	Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8. Journal of Biological Chemistry, 2001, 276, 46639-46646.	1.6	434
24	Triggering Cell Death. Molecular Cell, 1999, 4, 563-571.	4.5	412
25	An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science, 1987, 238, 672-675.	6.0	397
26	Phase I Dose-Escalation Study of Recombinant Human Apo2L/TRAIL, a Dual Proapoptotic Receptor Agonist, in Patients With Advanced Cancer. Journal of Clinical Oncology, 2010, 28, 2839-2846.	0.8	394
27	Ligand-Based Targeting of Apoptosis in Cancer: The Potential of Recombinant Human Apoptosis Ligand 2/Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand (rhApo2L/TRAIL). Journal of Clinical Oncology, 2008, 26, 3621-3630.	0.8	386
28	Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Current Biology, 2000, 10, 785-788.	1.8	380
29	Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature Reviews Drug Discovery, 2008, 7, 1001-1012.	21.5	374
30	Targeting the extrinsic apoptosis pathway in cancer. Cytokine and Growth Factor Reviews, 2008, 19, 325-331.	3.2	361
31	Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. Journal of Virology, 1992, 66, 235-243.	1.5	337
32	Targeting death receptors in cancer with Apo2L/TRAIL. Current Opinion in Pharmacology, 2004, 4, 333-339.	1.7	336
33	New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene, 2010, 29, 4752-4765.	2.6	314
34	A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature, 1992, 360, 161-163.	13.7	287
35	To kill a tumor cell: the potential of proapoptotic receptor agonists. Journal of Clinical Investigation, 2008, 118, 1979-1990.	3.9	282
36	Herpesvirus Entry Mediator, a Member of the Tumor Necrosis Factor Receptor (TNFR) Family, Interacts with Members of the TNFR-associated Factor Family and Activates the Transcription Factors NF-κB and AP-1. Journal of Biological Chemistry, 1997, 272, 14029-14032.	1.6	279

3

#	Article	IF	CITATIONS
37	Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell, 1989, 56, 487-493.	13.5	274
38	A Unique Zinc-Binding Site Revealed by a High-Resolution X-ray Structure of Homotrimeric Apo2L/TRAIL. Biochemistry, 2000, 39, 633-640.	1.2	262
39	Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10535-10539.	3.3	259
40	Acetylcholine analogue stimulates DNA synthesis in brain-derived cells via specific muscarinic receptor subtypes. Nature, 1989, 340, 146-150.	13.7	253
41	An Fc \hat{l}^3 Receptor-Dependent Mechanism Drives Antibody-Mediated Target-Receptor Signaling in \hat{A} Cancer Cells. Cancer Cell, 2011, 19, 101-113.	7.7	247
42	Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-κB. Current Biology, 1996, 6, 1669-1676.	1.8	244
43	Molecular Determinants of Kinase Pathway Activation by Apo2 Ligand/Tumor Necrosis Factor-related Apoptosis-inducing Ligand. Journal of Biological Chemistry, 2005, 280, 40599-40608.	1.6	243
44	Receptor-selective Mutants of Apoptosis-inducing Ligand 2/Tumor Necrosis Factor-related Apoptosis-inducing Ligand Reveal a Greater Contribution of Death Receptor (DR) 5 than DR4 to Apoptosis Signaling. Journal of Biological Chemistry, 2005, 280, 2205-2212.	1.6	237
45	NEMO and RIP1 Control Cell Fate in Response to Extensive DNA Damage via TNF-α Feedforward Signaling. Cell, 2011, 145, 92-103.	13.5	235
46	Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene, 2008, 27, 85-97.	2.6	233
47	Randomized Phase II Study of Dulanermin in Combination With Paclitaxel, Carboplatin, and Bevacizumab in Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2011, 29, 4442-4451.	0.8	227
48	Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunology, 2000, $1,37-41$.	7.0	223
49	TWEAK Attenuates the Transition from Innate to Adaptive Immunity. Cell, 2005, 123, 931-944.	13.5	221
50	Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. Journal of Clinical Investigation, 2009, 119, 1216-1229.	3.9	215
51	Isotype-Dependent Inhibition of Tumor Growth In Vivo by Monoclonal Antibodies to Death Receptor 4. Journal of Immunology, 2001, 166, 4891-4898.	0.4	213
52	Regulated Cell Death: Signaling and Mechanisms. Annual Review of Cell and Developmental Biology, 2014, 30, 337-356.	4.0	212
53	Targeting the extrinsic apoptotic pathway in cancer: lessons learned and future directions. Journal of Clinical Investigation, 2015, 125, 487-489.	3.9	209
54	Ligand-Induced Autoregulation of IFN-gamma Receptor beta Chain Expression in T Helper Cell Subsets. Science, 1995, 270, 1215-1218.	6.0	199

#	Article	IF	CITATIONS
55	TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nature Immunology, 2001, 2, 632-637.	7.0	199
56	Locoregional Apo2L/TRAIL Eradicates Intracranial Human Malignant Glioma Xenografts in Athymic Mice in the Absence of Neurotoxicity. Biochemical and Biophysical Research Communications, 1999, 265, 479-483.	1.0	197
57	Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Current Biology, 1996, 6, 750-752.	1.8	195
58	Identification of a ligand for the death-domain-containing receptor Apo3. Current Biology, 1998, 8, 525-S2.	1.8	186
59	Mapping the CD4 binding site for human immunodeficiency virus by alanine-scanning mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7150-7154.	3.3	181
60	Targeting FGFR4 Inhibits Hepatocellular Carcinoma in Preclinical Mouse Models. PLoS ONE, 2012, 7, e36713.	1.1	179
61	Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Current Biology, 1999, 9, 215-218.	1.8	178
62	APRIL-Deficient Mice Have Normal Immune System Development. Molecular and Cellular Biology, 2004, 24, 997-1006.	1.1	170
63	APO2 ligand: a novel lethal weapon against malignant glioma?. FEBS Letters, 1998, 427, 124-128.	1.3	164
64	The MHC-binding and gp120-binding functions of CD4 are separable. Science, 1989, 245, 743-746.	6.0	155
65	A Phase I Safety and Pharmacokinetic Study of the Death Receptor 5 Agonistic Antibody PRO95780 in Patients with Advanced Malignancies. Clinical Cancer Research, 2010, 16, 1256-1263.	3.2	154
66	Selective Knockdown of the Long Variant of Cellular FLICE Inhibitory Protein Augments Death Receptor-mediated Caspase-8 Activation and Apoptosis. Journal of Biological Chemistry, 2005, 280, 19401-19409.	1.6	141
67	AXL Inhibition Sensitizes Mesenchymal Cancer Cells to Antimitotic Drugs. Cancer Research, 2014, 74, 5878-5890.	0.4	137
68	TRAF2 Sets a Threshold for Extrinsic Apoptosis by Tagging Caspase-8 with a Ubiquitin Shutoff Timer. Molecular Cell, 2012, 48, 888-899.	4.5	133
69	Structural and functional analysis of the interaction between the agonistic monoclonal antibody Apomab and the proapoptotic receptor DR5. Cell Death and Differentiation, 2008, 15, 751-761.	5.0	132
70	Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate. Molecular Cell, 2018, 71, 629-636.e5.	4.5	131
71	Proapoptotic DR4 and DR5 signaling in cancer cells: toward clinical translation. Current Opinion in Cell Biology, 2010, 22, 837-844.	2.6	130
72	Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death and Differentiation, 2006, 13, 1631-1640.	5.0	127

#	Article	IF	CITATIONS
73	Ligand-Induced Assembly and Activation of the Gamma Interferon Receptor in Intact Cells. Molecular and Cellular Biology, 1996, 16, 3214-3221.	1.1	126
74	The zebrafish as a model organism for the study of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 331-349.	2.2	120
75	Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7056-7060.	3.3	116
76	Secreted Sulfatases Sulf1 and Sulf2 Have Overlapping yet Essential Roles in Mouse Neonatal Survival. PLoS ONE, 2007, 2, e575.	1.1	114
77	Apo2 Ligand/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Cooperates with Chemotherapy to Inhibit Orthotopic Lung Tumor Growth and Improve Survival. Cancer Research, 2004, 64, 4900-4905.	0.4	108
78	Death-receptor activation halts clathrin-dependent endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10283-10288.	3.3	98
79	Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death and Differentiation, 2006, 13, 1619-1630.	5.0	97
80	Binding sites of human growth hormone and ovine and bovine prolactins in the mammary gland and the liver of lactating dairy cow. Molecular and Cellular Endocrinology, 1984, 34, 51-57.	1.6	94
81	Immunoadhesins: principles and applications. Trends in Biotechnology, 1996, 14, 52-60.	4.9	94
82	Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood, 2007, 110, 4037-4046.	0.6	94
83	Cloning and expression of a human CDC42 GTPase-activating protein reveals a functional SH3-binding domain. Journal of Biological Chemistry, 1993, 268, 26059-62.	1.6	93
84	Lipopolysaccharide Induces Expression of APO2 Ligand/TRAIL in Human Monocytes and Macrophages. Scandinavian Journal of Immunology, 2000, 51, 244-250.	1.3	92
85	ISCOMATRIX vaccines mediate CD8 ⁺ Tâ€cell crossâ€priming by a MyD88â€dependent signaling pathway. Immunology and Cell Biology, 2012, 90, 540-552.	1.0	92
86	Interferon gamma signals via a high-affinity multisubunit receptor complex that contains two types of polypeptide chain Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5401-5405.	3.3	89
87	E-Cadherin Couples Death Receptors to the Cytoskeleton to Regulate Apoptosis. Molecular Cell, 2014, 54, 987-998.	4.5	88
88	REGULATION OF APO-2 LIGAND/TRAIL EXPRESSION IN NK CELLSâ€"INVOLVEMENT IN NK CELL-MEDIATED CYTOTOXICITY. Cytokine, 1999, 11, 664-672.	1.4	83
89	TWEAK Induces Apoptosis through a Death-signaling Complex Comprising Receptor-interacting Protein 1 (RIP1), Fas-associated Death Domain (FADD), and Caspase-8. Journal of Biological Chemistry, 2011, 286, 21546-21554.	1.6	81
90	Fibroblast Growth Factor Receptor 3 Is a Rational Therapeutic Target in Bladder Cancer. Molecular Cancer Therapeutics, 2013, 12, 1245-1254.	1.9	79

#	Article	IF	Citations
91	Apoptosis Initiation Through the Cell-Extrinsic Pathway. Methods in Enzymology, 2014, 544, 99-128.	0.4	78
92	Disruption of IRE1 \hat{l}_{\pm} through its kinase domain attenuates multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16420-16429.	3.3	78
93	TRAF2 is a biologically important necroptosis suppressor. Cell Death and Differentiation, 2015, 22, 1846-1857.	5.0	76
94	Immunoadhesins as research tools and therapeutic agents. Current Opinion in Immunology, 1997, 9, 195-200.	2.4	73
95	FGFR3 Stimulates Stearoyl CoA Desaturase 1 Activity to Promote Bladder Tumor Growth. Cancer Research, 2012, 72, 5843-5855.	0.4	73
96	Enhancing the antitumor efficacy of a cell-surface death ligand by covalent membrane display. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5679-5684.	3.3	73
97	Regulation of Apo2L/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Thyroid Carcinoma Cells. American Journal of Pathology, 2002, 161, 643-654.	1.9	70
98	Misfolded proteins bind and activate death receptor 5 to trigger apoptosis during unresolved endoplasmic reticulum stress. ELife, 2020, 9 , .	2.8	70
99	Inflammasome-Dependent and -Independent IL-18 Production Mediates Immunity to the ISCOMATRIX Adjuvant. Journal of Immunology, 2014, 192, 3259-3268.	0.4	69
100	Elimination of Hepatic Metastases of Colon Cancer Cells via p53-Independent Cross-Talk between Irinotecan and Apo2 Ligand/TRAIL. Cancer Research, 2004, 64, 9105-9114.	0.4	66
101	TNFâ€related apoptosisâ€inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice. Immunology and Cell Biology, 2005, 83, 511-519.	1.0	61
102	Design, Construction, and In Vitro Analyses of Multivalent Antibodies. Journal of Immunology, 2003, 170, 4854-4861.	0.4	57
103	Proapoptotic Activation of Death Receptor 5 on Tumor Endothelial Cells Disrupts the Vasculature and Reduces Tumor Growth. Cancer Cell, 2012, 22, 80-90.	7.7	55
104	Cooperation of the Agonistic DR5 Antibody Apomab with Chemotherapy to Inhibit Orthotopic Lung Tumor Growth and Improve Survival. Clinical Cancer Research, 2008, 14, 7733-7740.	3.2	53
105	Targeting the Apoptotic Pathway in Chondrosarcoma Using Recombinant Human Apo2L/TRAIL (Dulanermin), a Dual Proapoptotic Receptor (DR4/DR5) Agonist. Molecular Cancer Therapeutics, 2012, 11, 2541-2546.	1.9	53
106	Biochemical characterization of the extracellular domain of the 75-kilodalton tumor necrosis factor receptor. Biochemistry, 1993, 32, 3131-3138.	1,2	51
107	Activation of the Proapoptotic Death Receptor DR5 by Oligomeric Peptide and Antibody Agonists. Journal of Molecular Biology, 2006, 361, 522-536.	2.0	51
108	X Chromosome-linked Inhibitor of Apoptosis Regulates Cell Death Induction by Proapoptotic Receptor Agonists. Journal of Biological Chemistry, 2009, 284, 34553-34560.	1.6	51

#	Article	IF	CITATIONS
109	A Phase 1B Study of Dulanermin in Combination With Modified FOLFOX6 Plus Bevacizumab in Patients With Metastatic Colorectal Cancer. Clinical Colorectal Cancer, 2013, 12, 248-254.	1.0	48
110	Inhibition of Lactogenic Activities of Ovine Prolactin and Human Growth Hormone (hGH) by a Novel Form of a Modified Recombinant hGH*. Endocrinology, 1986, 118, 720-726.	1.4	46
111	SnapShot: Caspases. Cell, 2011, 147, 476-476.e1.	13.5	46
112	Immunoadhesins. International Reviews of Immunology, 1993, 10, 219-227.	1.5	45
113	Modification of CD4 Immunoadhesin with Monomethoxypoly(Ethylene Glycol) Aldehyde via Reductive Alkylation. Bioconjugate Chemistry, 1994, 5, 133-140.	1.8	45
114	IRE1α Disruption in Triple-Negative Breast Cancer Cooperates with Antiangiogenic Therapy by Reversing ER Stress Adaptation and Remodeling the Tumor Microenvironment. Cancer Research, 2020, 80, 2368-2379.	0.4	44
115	Protection Against Rat Endotoxic Shock By p55 Tumor Necrosis Factor (TNF) Receptor Immunoadhesin: Comparison with Anti-TNF Monoclonal Antibody. Journal of Infectious Diseases, 1994, 170, 1323-1326.	1.9	37
116	Development of Immunohistochemistry Assays to Assess GALNT14 and FUT3/6 in Clinical Trials of Dulanermin and Drozitumab. Clinical Cancer Research, 2010, 16, 1587-1596.	3.2	37
117	Enzymic cleavage of a CD4 immunoadhesin generates crystallizable, biologically active Fd-like fragments. Biochemistry, 1990, 29, 9885-9891.	1.2	36
118	Antixenograft tumor activity of a humanized anti-insulin-like growth factor-I receptor monoclonal antibody is associated with decreased AKT activation and glucose uptake. Molecular Cancer Therapeutics, 2008, 7, 2599-2608.	1.9	36
119	Dulanermin with rituximab in patients with relapsed indolent B-cell lymphoma: an open-label phase 1b/2 randomised study. Lancet Haematology,the, 2015, 2, e166-e174.	2.2	36
120	Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. ELife, 2019, 8, .	2.8	35
121	$Fc\hat{l}^3$ receptors enable anticancer action of proapoptotic and immune-modulatory antibodies. Journal of Experimental Medicine, 2013, 210, 1647-1651.	4.2	34
122	Confirming a critical role for death receptor 5 and caspase-8 in apoptosis induction by endoplasmic reticulum stress. Cell Death and Differentiation, 2018, 25, 1530-1531.	5.0	30
123	Liposome targeting to human immunodeficiency virus type 1-infected cells via recombinant soluble CD4 and CD4 immunoadhesin (CD4-IgG). Biochimica Et Biophysica Acta - Biomembranes, 1994, 1194, 185-196.	1.4	29
124	Protection against endotoxic shock by bactericidal/permeability-increasing protein in rats Journal of Clinical Investigation, 1995, 95, 1947-1952.	3.9	29
125	Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members. MAbs, 2019, 11, 996-1011.	2.6	28
126	Adenoviral expression of XIAP antisense RNA induces apoptosis in glioma cells and suppresses the growth of xenografts in nude mice. Gene Therapy, 2007, 14, 147-161.	2.3	26

#	Article	IF	CITATIONS
127	Comparative Study of in Vitro and in Vivo Modulation of Lactogenic and Somatotropic Receptors by Native Human Growth Hormone and Its Modified Analog Prepared by Recombinant Deoxyribonucleic Acid Technology. Endocrinology, 1987, 121, 414-419.	1.4	25
128	Characterization of lactogen receptors in lactogenic hormone-dependent and independent NB2 lymphoma cell lines. FEBS Letters, 1987, 210, 51-55.	1.3	24
129	Host genetic background impacts modulation of the TLR4 pathway by RON in tissueâ€associated macrophages. Immunology and Cell Biology, 2013, 91, 451-460.	1.0	24
130	Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands. Nature Communications, 2020, 11, 6387.	5.8	24
131	The stress-sensing domain of activated IRE1 $\hat{l}\pm$ forms helical filaments in narrow ER membrane tubes. Science, 2021, 374, 52-57.	6.0	24
132	Decoding non-canonical mRNA decay by the endoplasmic-reticulum stress sensor IRE1α. Nature Communications, 2021, 12, 7310.	5.8	24
133	Complementary Proteomic Tools for the Dissection of Apoptotic Proteolysis Events. Journal of Proteome Research, 2012, 11, 2947-2954.	1.8	23
134	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	13.7	23
135	Distinct Involvement of the Gab1 and Grb2 Adaptor Proteins in Signal Transduction by the Related Receptor Tyrosine Kinases RON and MET. Journal of Biological Chemistry, 2011, 286, 32762-32774.	1.6	21
136	MMP-1 and Pro-MMP-10 as Potential Urinary Pharmacodynamic Biomarkers of FGFR3-Targeted Therapy in Patients with Bladder Cancer. Clinical Cancer Research, 2014, 20, 6324-6335.	3.2	20
137	ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models. Nuclear Medicine and Biology, 2013, 40, 15-22.	0.3	18
138	Inhibition of the proliferation of Nb2 cells by femtomolar concentrations of cholera toxin and partial reversal of the effect by 12-O-tetradecanoyl-phorbol-13-acetate. Journal of Cellular Biochemistry, 1988, 37, 119-129.	1.2	17
139	Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage. Molecular Immunology, 1994, 31, 1335-1344.	1.0	17
140	Antigen-derived peptides engage the ER stress sensor IRE1 \hat{l}_{\pm} to curb dendritic cell cross-presentation. Journal of Cell Biology, 2022, 221, .	2.3	17
141	The Third Intracellular Loop of the 5â€Hydroxytryptamine _{2A} Receptor Determines Effector Coupling Specificity. Journal of Neurochemistry, 1995, 64, 1440-1447.	2.1	16
142	Partial purification and characterization of bovine mammary gland prolactin receptor. Molecular and Cellular Endocrinology, 1987, 50, 79-87.	1.6	15
143	A Humanized, Bispecific Immunoadhesin-Antibody that Retargets CD3+ Effectors to Kill HIV-1-Infected Cells. Stem Cells and Development, 1995, 4, 439-446.	1.0	15
144	Immunoadhesins: An Alternative to Human Monoclonal Antibodies. Methods, 1995, 8, 104-115.	1.9	14

#	Article	IF	CITATIONS
145	Endoplasmic reticulum stress activates human IRE1 $\hat{\textbf{l}}\pm$ through reversible assembly of inactive dimers into small oligomers. ELife, 0, 11, .	2.8	14
146	Molecular and biological properties of an interleukin-1 receptor immunoadhesin. Molecular Immunology, 1994, 31, 1345-1351.	1.0	13
147	Antitherapeutic antibody-mediated hepatotoxicity of recombinant human Apo2L/TRAIL in the cynomolgus monkey. Cell Death and Disease, 2016, 7, e2338-e2338.	2.7	13
148	MET Suppresses Epithelial VEGFR2 via Intracrine VEGF-induced Endoplasmic Reticulum-associated Degradation. EBioMedicine, 2015, 2, 406-420.	2.7	12
149	FOLFIRI plus dulanermin (rhApo2L/TRAIL) in a patient with BRAF-mutant metastatic colon cancer. Cancer Biology and Therapy, 2013, 14, 711-719.	1.5	11
150	Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay. Nature Communications, 2022, 13, 1587.	5.8	11
151	Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death. Molecular and Cellular Proteomics, 2016, 15, 2293-2307.	2.5	7
152	Neuronal regulated ire-1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans. ELife, 2021, 10 , .	2.8	7
153	Solubilization and characterization of lactogenic hormone receptor from kidney of lactating cow. Molecular and Cellular Endocrinology, 1989, 61, 77-85.	1.6	6
154	Redesigning a Monospecific Anti-FGFR3 Antibody to Add Selectivity for FGFR2 and Expand Antitumor Activity. Molecular Cancer Therapeutics, 2015, 14, 2270-2278.	1.9	6
155	Identification of BRaf-Sparing Amino-Thienopyrimidines with Potent IRE1α Inhibitory Activity. ACS Medicinal Chemistry Letters, 2020, 11, 2389-2396.	1.3	6
156	Designer Proteins to Trigger Cell Death. Cell, 2014, 157, 1506-1508.	13.5	5
157	A Comparative Study of Lactogenic Hormone Binding Sites in the Adrenal Gland, Ovary and Kidney of the Lactating Cow. Journal of Receptors and Signal Transduction, 1987, 7, 921-936.	1.2	4
158	Toward small-molecule agonists of TNF receptors. Nature Chemical Biology, 2005, 1, 353-354.	3.9	4
159	UNCovering the Molecular Machinery of Dependence Receptor Signaling. Molecular Cell, 2010, 40, 851-853.	4.5	4
160	Steroid-induced fibroblast growth factors drive an epithelial-mesenchymal inflammatory axis in severe asthma. Science Translational Medicine, 2022, 14, eabl8146.	5.8	2
161	Combining Enhanced Metabolic Labeling with Immunoblotting to Detect Interactions of Endogenous Cellular Proteins. BioTechniques, 2000, 29, 506-512.	0.8	1
162	SnapShot: Caspases. Cell, 2011, 147, 1197.	13.5	1

#	Article	IF	CITATIONS
163	Preface. Methods in Enzymology, 2014, 544, xv.	0.4	1
164	Membrane display and functional analysis of juxtacrine ligand-receptor signaling. BioTechniques, 2015, 59, 231-8, 240.	0.8	1
165	Abstract 693: AXL tyrosine kinase inhibition selectively sensitizes mesenchymal cancer cells to antimitotic agents., 2014,,.		1
166	Response to 'Secreted IgM versus BLyS in germinal center formation'. Nature Immunology, 2000, 1, 179-179.	7.0	0
167	Tnfsf10. The AFCS-nature Molecule Pages, 0, , .	0.2	O
168	Tnfrsf10. The AFCS-nature Molecule Pages, 0, , .	0.2	0
169	Abstract 4463: Activation of FGFR signaling as a mechanism of acquired resistance to erlotinib in EGFR-mutant lung cancer associated with an EMT , 2013 , , .		O
170	Abstract 3690: MMP-1 and pro-MMP-10 as potential urinary pharmacodynamic biomarkers of FGFR3-targeted therapy in patients with bladder cancer., 2014 ,,.		O