## Nan-Shan Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5693154/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Hyaluronidase Induction of a WW Domain-containing Oxidoreductase That Enhances Tumor Necrosis<br>Factor Cytotoxicity. Journal of Biological Chemistry, 2001, 276, 3361-3370.                                                                                                 | 1.6 | 212       |
| 2  | WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends in Molecular Medicine, 2007, 13, 12-22.                                                                                                                                                            | 3.5 | 129       |
| 3  | WOX1 Is Essential for Tumor Necrosis Factor-, UV Light-, Staurosporine-, and p53-mediated Cell Death, and Its Tyrosine 33-phosphorylated Form Binds and Stabilizes Serine 46-phosphorylated p53. Journal of Biological Chemistry, 2005, 280, 43100-43108.                    | 1.6 | 122       |
| 4  | Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells.<br>PLoS ONE, 2009, 4, e5755.                                                                                                                                                    | 1.1 | 120       |
| 5  | JNK1 Physically Interacts with WW Domain-containing Oxidoreductase (WOX1) and Inhibits WOX1-mediated Apoptosis. Journal of Biological Chemistry, 2003, 278, 9195-9202.                                                                                                       | 1.6 | 119       |
| 6  | Down-regulation of WW Domain-containing Oxidoreductase Induces Tau Phosphorylation in Vitro.<br>Journal of Biological Chemistry, 2004, 279, 30498-30506.                                                                                                                     | 1.6 | 119       |
| 7  | WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness<br>Maintenance, Tissue Homeostasis, and Tumorigenesis. Frontiers in Oncology, 2019, 9, 60.                                                                                      | 1.3 | 116       |
| 8  | Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Optics Express, 2012, 20, 8939.                                                                                                                                                  | 1.7 | 97        |
| 9  | 17β-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene, 2005, 24, 714-723.                                                                  | 2.6 | 93        |
| 10 | Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses.<br>Biochemical Pharmacology, 2003, 66, 1347-1354.                                                                                                                                     | 2.0 | 80        |
| 11 | Transforming Growth Factor β1 Signaling via Interaction with Cell Surface Hyal-2 and Recruitment of WWOX/WOX1. Journal of Biological Chemistry, 2009, 284, 16049-16059.                                                                                                      | 1.6 | 77        |
| 12 | WOX1 Is Essential for UVB Irradiation–Induced Apoptosis and Down-Regulated via Translational<br>Blockade in UVB-Induced Cutaneous Squamous Cell Carcinoma In vivo. Clinical Cancer Research, 2005,<br>11, 5769-5777.                                                         | 3.2 | 74        |
| 13 | Dramatic Co-Activation of WWOX/WOX1 with CREB and NF-ήB in Delayed Loss of Small Dorsal Root<br>Ganglion Neurons upon Sciatic Nerve Transection in Rats. PLoS ONE, 2009, 4, e7820.                                                                                           | 1.1 | 52        |
| 14 | Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase.<br>Experimental Biology and Medicine, 2010, 235, 796-804.                                                                                                                         | 1.1 | 52        |
| 15 | WWOX Phosphorylation, Signaling, and Role in Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 563.                                                                                                                                                                    | 1.4 | 52        |
| 16 | Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in<br>the brain. Oncotarget, 2015, 6, 3578-3589.                                                                                                                        | 0.8 | 52        |
| 17 | The Non-ankyrin C Terminus of lκBα Physically Interacts with p53 in Vivo and Dissociates in Response to<br>Apoptotic Stress, Hypoxia, DNA Damage, and Transforming Growth Factor-β1-mediated Growth<br>Suppression. Journal of Biological Chemistry, 2002, 277, 10323-10331. | 1.6 | 49        |
| 18 | Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia.<br>Genes and Cancer, 2011, 2, 550-562.                                                                                                                                    | 0.6 | 46        |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish —<br>Implication in neural tube defects and Alzheimer's diseases. Neurobiology of Disease, 2014, 71, 234-244.                                                                            | 2.1 | 45        |
| 20 | Wwox deficiency leads to neurodevelopmental and degenerative neuropathies and glycogen synthase kinase 3β-mediated epileptic seizure activity in mice. Acta Neuropathologica Communications, 2020, 8, 6.                                                                                  | 2.4 | 45        |
| 21 | Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-ήB, JNK1, p53 and WOX1 during stress response. BMC Molecular Biology, 2007, 8, 50.                                                                      | 3.0 | 43        |
| 22 | MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1. European Journal of Neuroscience, 2008, 27, 1634-1646.                                                                                                              | 1.2 | 43        |
| 23 | Zfra restores memory deficits in Alzheimer's disease tripleâ€transgenic mice by blocking aggregation of<br>TRAPPC6AΔ, SH3CLB2, tau, and amyloid β, and inflammatory NFâ€IºB activation. Alzheimer's and Dementia:<br>Translational Research and Clinical Interventions, 2017, 3, 189-204. | 1.8 | 43        |
| 24 | Prc Contributes to Escherichia coli Evasion of Classical Complement-Mediated Serum Killing.<br>Infection and Immunity, 2012, 80, 3399-3409.                                                                                                                                               | 1.0 | 42        |
| 25 | A potential role of p53 and WOX1 in mitochondrial apoptosis (review). International Journal of<br>Molecular Medicine, 2002, 9, 19-24.                                                                                                                                                     | 1.8 | 39        |
| 26 | WWOX suppresses prostate cancer cell progression through cyclin D1-mediated cell cycle arrest in the G1 phase. Cell Cycle, 2015, 14, 408-416.                                                                                                                                             | 1.3 | 38        |
| 27 | Transforming growth factor-beta1 blocks the enhancement of tumor necrosis factor cytotoxicity by hyaluronidase Hyal-2 in L929 fibroblasts. , 2002, 3, 8.                                                                                                                                  |     | 35        |
| 28 | UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures.<br>Oncotarget, 2015, 6, 8007-8018.                                                                                                                                                   | 0.8 | 35        |
| 29 | Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Experimental Biology and Medicine, 2018, 243, 137-147.                                                                                                           | 1.1 | 33        |
| 30 | HYAL-2–WWOX–SMAD4 Signaling in Cell Death and Anticancer Response. Frontiers in Cell and<br>Developmental Biology, 2016, 4, 141.                                                                                                                                                          | 1.8 | 32        |
| 31 | A p53/TIAF1/WWOX triad exerts cancer suppression but may cause brain protein aggregation due to p53/WWOX functional antagonism. Cell Communication and Signaling, 2019, 17, 76.                                                                                                           | 2.7 | 31        |
| 32 | Hyaluronidase enhancement of TNF-mediated cell death is reversed by TGF-β1. American Journal of Physiology - Cell Physiology, 1997, 273, C1987-C1994.                                                                                                                                     | 2.1 | 30        |
| 33 | Cloning and Characterization of a Novel Transforming Growth Factor-Î <sup>2</sup> 1-Induced TIAF1 Protein That<br>Inhibits Tumor Necrosis Factor Cytotoxicity. Biochemical and Biophysical Research Communications,<br>1998, 253, 743-749.                                                | 1.0 | 30        |
| 34 | Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement. Biomedical Optics Express, 2015, 6, 480.                                                                                                                                      | 1.5 | 30        |
| 35 | Hyaluronan activates Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. Oncotarget, 2017, 8, 19137-19155.                                                                                                                            | 0.8 | 28        |
| 36 | Investigation of two-photon excited fluorescence increment via crosslinked bovine serum albumin.<br>Optics Express, 2012, 20, 13669.                                                                                                                                                      | 1.7 | 27        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of WWOX and NF-κB in lung cancer progression. Translational Respiratory Medicine, 2013, 1, 15.                                                                                                                            | 3.8 | 26        |
| 38 | Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas. Frontiers in Oncology, 2013, 3, 43.                                                                                                            | 1.3 | 25        |
| 39 | Strategies by which WWOX-deficient metastatic cancer cells utilize to survive via dodging,<br>compromising, and causing damage to WWOX-positive normal microenvironment. Cell Death<br>Discovery, 2019, 5, 97.                 | 2.0 | 25        |
| 40 | Role of WW Domain-containing Oxidoreductase WWOX in Driving T Cell Acute Lymphoblastic Leukemia Maturation. Journal of Biological Chemistry, 2016, 291, 17319-17331.                                                           | 1.6 | 24        |
| 41 | Zfra is an inhibitor of Bcl-2 expression and cytochrome c release from the mitochondria. Cellular<br>Signalling, 2008, 20, 1303-1312.                                                                                          | 1.7 | 21        |
| 42 | Overexpression of WW domain-containing oxidoreductase WOX1 preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. Biomedicine and Pharmacotherapy, 2012, 66, 433-438.                              | 2.5 | 21        |
| 43 | Bubbling cell death: A hot air balloon released from the nucleus in the cold. Experimental Biology and Medicine, 2016, 241, 1306-1315.                                                                                         | 1.1 | 21        |
| 44 | Zfra activates memory Hyal-2+ CD3â <sup>-</sup> ' CD19â <sup>-</sup> ' spleen cells to block cancer growth, stemness, and metastasisin vivo. Oncotarget, 2015, 6, 3737-3751.                                                   | 0.8 | 20        |
| 45 | TIAF1 and p53 Functionally Interact in Mediating Apoptosis and Silencing of TIAF1 Abolishes Nuclear<br>Translocation of Serine 15-Phosphorylated p53. DNA and Cell Biology, 2004, 23, 67-74.                                   | 0.9 | 18        |
| 46 | Functional role of WW domainâ€containing proteins in tumor biology and diseases: Insight into the role in ubiquitinâ€proteasome system. FASEB BioAdvances, 2020, 2, 234-253.                                                   | 1.3 | 18        |
| 47 | Self-aggregating TIAF1 in lung cancer progression. Translational Respiratory Medicine, 2013, 1, 5.                                                                                                                             | 3.8 | 16        |
| 48 | Natural zeolite for adsorbing and release of functional materials. Journal of Biomedical Optics, 2018, 23, 1.                                                                                                                  | 1.4 | 16        |
| 49 | Cloning and characterization of a small-size peptide Zfra that regulates the cytotoxic function of tumor necrosis factor by interacting with JNK1. Biochemical and Biophysical Research Communications, 2005, 327, 415-423.    | 1.0 | 15        |
| 50 | Introduction to a Thematic Issue for WWOX. Experimental Biology and Medicine, 2015, 240, 281-284.                                                                                                                              | 1.1 | 15        |
| 51 | TIAF1 Participates in the Transforming Growth Factor β1â€Mediated Growth Regulation. Annals of the New York Academy of Sciences, 2003, 995, 11-21.                                                                             | 1.8 | 14        |
| 52 | WW domain-containing oxidoreductase is involved in upregulation of matrix metalloproteinase 9 by<br>Epstein–Barr virus latent membrane protein 2A. Biochemical and Biophysical Research<br>Communications, 2013, 436, 672-676. | 1.0 | 13        |
| 53 | Chasing the signaling run by tri-molecular time-lapse FRET microscopy. Cell Death Discovery, 2018, 4, 45.                                                                                                                      | 2.0 | 13        |
| 54 | Visualization of Subunit Interactions and Ternary Complexes of Protein Phosphatase 2A in Mammalian<br>Cells. PLoS ONE, 2014, 9, e116074.                                                                                       | 1.1 | 13        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Zfra is a small wizard in the mitochondrial apoptosis. Aging, 2010, 2, 1023-1029.                                                                                                                                                          | 1.4 | 13        |
| 56 | High-throughput fabrication of gray-level biomicrostructures via temporal focusing excitation and laser pulse control. Journal of Biomedical Optics, 2013, 18, 1.                                                                          | 1.4 | 12        |
| 57 | Assessing Current Therapeutic Approaches to Decode Potential Resistance Mechanisms in<br>Glioblastomas. Frontiers in Oncology, 2013, 3, 59.                                                                                                | 1.3 | 11        |
| 58 | WWOX Possesses N-Terminal Cell Surface-Exposed Epitopes WWOX7-21 and WWOX7-11 for Signaling Cancer Growth Suppression and Prevention In Vivo. Cancers, 2019, 11, 1818.                                                                     | 1.7 | 10        |
| 59 | WWOX and Its Binding Proteins in Neurodegeneration. Cells, 2021, 10, 1781.                                                                                                                                                                 | 1.8 | 10        |
| 60 | Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Experimental<br>Biology and Medicine, 2015, 240, 329-337.                                                                                               | 1.1 | 9         |
| 61 | Therapeutic Zfra4-10 or WWOX7-21 Peptide Induces Complex Formation of WWOX with Selective<br>Protein Targets in Organs that Leads to Cancer Suppression and Spleen Cytotoxic Memory Z Cell<br>Activation In Vivo. Cancers, 2020, 12, 2189. | 1.7 | 9         |
| 62 | Expression of WW domain-containing oxidoreductase WOX1 in human nervous system tumors.<br>Analytical Cellular Pathology, 2013, 36, 133-47.                                                                                                 | 0.7 | 9         |
| 63 | Expression of WW Domain-Containing Oxidoreductase WOX1 in Human Nervous System Tumors.<br>Analytical Cellular Pathology, 2013, 36, 133-147.                                                                                                | 0.7 | 7         |
| 64 | Editorial: WW Domain Proteins in Signaling, Cancer Growth, Neural Diseases, and Metabolic<br>Disorders. Frontiers in Oncology, 2019, 9, 719.                                                                                               | 1.3 | 7         |
| 65 | Zfra induction of memory anticancer response via a novel immune cell. Oncolmmunology, 2016, 5, e1213935.                                                                                                                                   | 2.1 | 6         |
| 66 | Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Frontiers in Cell and Developmental Biology, 2020, 8, 558432.                                                         | 1.8 | 6         |
| 67 | Normal cells repel WWOX-negative or -dysfunctional cancer cells via WWOX cell surface epitope 286-299. Communications Biology, 2021, 4, 753.                                                                                               | 2.0 | 6         |
| 68 | Fast and improved bioimaging via temporal focusing multiphoton excitation microscopy with binary digital-micromirror-device holography. Journal of Biomedical Optics, 2018, 23, 1.                                                         | 1.4 | 5         |
| 69 | Expression of WW domain-containing oxidoreductase WWOX in pterygium. Molecular Vision, 2015, 21, 711-7.                                                                                                                                    | 1.1 | 5         |
| 70 | WWOX is a Risk Factor for Alzheimer's Disease: How and Why?. Proceedings of the Singapore National<br>Academy of Science, 2020, 14, 31-45.                                                                                                 | 0.1 | 3         |
| 71 | WWOX Controls Cell Survival, Immune Response and Disease Progression by pY33 to pS14 Transition to Alternate Signaling Partners. Cells, 2022, 11, 2137.                                                                                    | 1.8 | 1         |
| 72 | Zfra and its activated Z cell suppress traumatic brain injury to Alzheimer's disease transition. FASEB<br>Journal, 2021, 35, .                                                                                                             | 0.2 | 0         |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Zfra suppresses seizure and progression of Alzheimer's disease via activated Z lymphocytes. FASEB<br>Journal, 2021, 35, .                                                       | 0.2 | 0         |
| 74 | Cell surface epitope WWOX286â€299 in normal cells is responsible for repelling invading<br>WWOXâ€negative or â€dysfunctional cancer cells. FASEB Journal, 2021, 35, .           | 0.2 | 0         |
| 75 | Zfra invokes a novel mitochondrial pathway of cell death bypassing cytochrome c release. FASEB<br>Journal, 2007, 21, A1345.                                                     | 0.2 | 0         |
| 76 | TIAF1 selfâ€ <b>a</b> ggregation is essential for Aβ plaque formation in the human hippocampus. FASEB Journal, 2010, 24, 1053.1.                                                | 0.2 | 0         |
| 77 | C1q/WOX1 signaling for superinduction of microvillus cluster formation. FASEB Journal, 2010, 24, 711.2.                                                                         | 0.2 | 0         |
| 78 | TIAF1 is an essential partner for tumor suppressors p53―and WWOXâ€mediated apoptosis. FASEB Journal,<br>2011, 25, 943.4.                                                        | 0.2 | 0         |
| 79 | TIAF1 selfâ€aggregation causes spontaneous activation of SMADâ€responsive promoter in p53â€deficient<br>environment and cell death. FASEB Journal, 2012, 26, 797.3.             | 0.2 | 0         |
| 80 | Selfâ€aggregating mutant TRAPPC6A from partial exon 1 gene deletion activates caspases, binds TIAF1, and generates amyloid beta in hippocampus. FASEB Journal, 2012, 26, 752.2. | 0.2 | 0         |
| 81 | A Copper Complex, ghnâ $\in$ 12, as a sensitization of DNA to UVA offers potential for a novel photochemotherapy. FASEB Journal, 2012, 26, 999.5.                               | 0.2 | 0         |
| 82 | WWOX/WOX1 is essential in UV irradiation/frostbiteâ€induced membrane bubbling. FASEB Journal, 2012,<br>26, 798.8.                                                               | 0.2 | 0         |
| 83 | Utilizing Twoâ€Photon Imaging and Tracking Algorithm to Study TGFâ€beta1â€Regulated SH3GLB2 Protein<br>Assembly. FASEB Journal, 2012, 26, .                                     | 0.2 | 0         |
| 84 | Evidence for a role of p53, WWOX and TIAF1 as tumor suppression axis. FASEB Journal, 2012, 26, 782.3.                                                                           | 0.2 | 0         |
| 85 | Physically modified hyaluronan in cancer prevention. FASEB Journal, 2013, 27, 592.5.                                                                                            | 0.2 | 0         |
| 86 | Tumor suppressor WWOX participates in cell/cell recognition and migration. FASEB Journal, 2013, 27, 765.1.                                                                      | 0.2 | 0         |
| 87 | Immunization against hyaluronidase Hyalâ€⊋ provides longâ€ŧerm cancer prevention. FASEB Journal, 2013,<br>27, 592.4.                                                            | 0.2 | 0         |
| 88 | Role of WWOX and NFâ€₽B in lung cancer progression (1049.2). FASEB Journal, 2014, 28, 1049.2.                                                                                   | 0.2 | 0         |
| 89 | UV irradiation/cold shockâ€induced NOS2 expression for causing nuclear bubbling is WWOX and p53 dependent (1010.11). FASEB Journal, 2014, 28, 1010.11.                          | 0.2 | 0         |
| 90 | WWOX Regulation of Cancer Stem Cell Sphere Formation. FASEB Journal, 2015, 29, 629.1.                                                                                           | 0.2 | 0         |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Hyalâ€2 antibody mediates cancer suppression via Hyalâ€2/WWOX/Smad4 signaling. FASEB Journal, 2015, 29,<br>897.29.                                                                            | 0.2 | 0         |
| 92  | Role of WWOX and ERK in Controlling Cancer Cell Migration. FASEB Journal, 2015, 29, 577.3.                                                                                                    | 0.2 | 0         |
| 93  | Abstract A25: WWOX phosphorylation at Ser14 enhances melanoma docking and growth in the lung and liver in mice. , 2015, , .                                                                   |     | 0         |
| 94  | WWOX coordinates with type II TGFâ€beta receptor in regulating cellâ€toâ€cell recognition and immune cell differentiation. FASEB Journal, 2016, 30, 1108.9.                                   | 0.2 | 0         |
| 95  | Hyaluronan signals release and nuclear accumulation of WWOX and Smad from membrane Hyalâ€⊋.<br>FASEB Journal, 2016, 30, .                                                                     | 0.2 | 0         |
| 96  | Induction of cancer stem cell sphere explosion by UV irradiation/cold shock or therapeutic chemicals: detection of autofluorescence using visible wavelength. FASEB Journal, 2018, 32, 664.4. | 0.2 | 0         |
| 97  | Converting the tumor suppressor function of WWOX to tumor promoting by Serine 14 phosphorylation. FASEB Journal, 2018, 32, 668.11.                                                            | 0.2 | 0         |
| 98  | TRAPPC6AΔ, TIAF1 and SH3GLB2 are initiators for amyloid beta plaque formation and tau aggregation in vivo. FASEB Journal, 2018, 32, 674.9.                                                    | 0.2 | 0         |
| 99  | Extracellular MIF and Wnt and eph/ephrin signaling are involved in WWOXâ€regulated cellâ€cell<br>recognition and migration. FASEB Journal, 2019, 33, 790.2.                                   | 0.2 | 0         |
| 100 | WWOX drives UV/cold shockâ€induced bubbling cell death whereas without WWOX cells pop out.<br>FASEB Journal, 2019, 33, 646.4.                                                                 | 0.2 | 0         |
| 101 | Role of WWOX and Zfra in limiting neurodegeneration. FASEB Journal, 2019, 33, lb253.                                                                                                          | 0.2 | 0         |
| 102 | A potential role of Zfra in mitigating traumatic brain injury transition to Alzheimer's diseaseâ€like<br>symptom in mice. FASEB Journal, 2020, 34, 1-1.                                       | 0.2 | 0         |
| 103 | Functional antagonism between p53 and WWOX in vivo leads to protein aggregation in the brain.<br>FASEB Journal, 2020, 34, 1-1.                                                                | 0.2 | 0         |
| 104 | Role of Zfra in mitigating epileptic seizure due to WWOX downregulation. FASEB Journal, 2020, 34, 1-1.                                                                                        | 0.2 | 0         |
| 105 | WWOX possesses N â€ŧerminal cell surfaceâ€exposed epitopes WWOX7â€21 and WWOX7â€11 for signaling cancer growth suppression and prevention in vivo. FASEB Journal, 2020, 34, 1-1.              | 0.2 | 0         |
| 106 | Conformationally altered hyaluronan mitigates the symptoms of Parkinson disease in mice. FASEB<br>Journal, 2022, 36, .                                                                        | 0.2 | 0         |
| 107 | The strength of WWOX binding with protein partners correlates with cancer suppression and potentially with inhibition of Alzheimer's disease progression. FASEB Journal, 2022, 36, .          | 0.2 | 0         |
| 108 | Sonicated hyaluronan is a potent inhibitor of Alzheimer's disease progression. FASEB Journal, 2022, 36,                                                                                       | 0.2 | 0         |

| #   | Article                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | WWOX regulates UV/cold shockâ€mediated calcium influx and nuclear bubbling in frostbite. FASEB<br>Journal, 2022, 36, . | 0.2 | 0         |