Chenggen Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/569306/publications.pdf

Version: 2024-02-01

42 papers 1,555 citations

331670
21
h-index

315739 38 g-index

45 all docs

45 docs citations

45 times ranked 1429 citing authors

#	Article	IF	CITATIONS
1	Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics, 2005, 5, 4496-4503.	2.2	103
2	Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Molecular Breeding, 2008, 22, 251-266.	2.1	97
3	Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and <i>Thinopyrum bessarabicum</i> chromosomes. Genome, 2017, 60, 93-103.	2.0	96
4	Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica, 2002, 125, 357-366.	1.2	89
5	Host-selective toxins produced by Stagonospora nodorum confer disease susceptibility in adult wheat plants under field conditions. Theoretical and Applied Genetics, 2009, 118, 1489-1497.	3.6	87
6	Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics, 2018, 131, 1967-1986.	3.6	83
7	<pre> <scp>SnTox5</scp>iscp>i= (i>scp>i>snn5fi>scp>i= (i>scp>i= nodorumfi>effectorâ€"wheat gene interaction and its relationship with the <scp><scp>SnToxA</scp>i= (i>scp>i= nodorumfi>scp>i= nodorum SnTox3 I=scp>i= nodorum I=scp i= nodorum I=scp i= nodorum I=scp i= nodorum I=scp i= nodorum<</scp></pre>	4.2	78
8	Molecular Plant Pathology, 2012, 13, 1101-1109. Identification of novel tan spot resistance loci beyond the known host-selective toxin insensitivity genes in wheat. Theoretical and Applied Genetics, 2008, 117, 873-881.	3.6	77
9	Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theoretical and Applied Genetics, 2006, 112, 1374-1381.	3.6	74
10	Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Molecular Breeding, 2012, 29, 791-800.	2.1	73
11	A Novel Retrotransposon Inserted in the Dominant <i>Vrn-B1</i> Allele Confers Spring Growth Habit in Tetraploid Wheat (<i>Triticum turgidum</i> L.). G3: Genes, Genomes, Genetics, 2011, 1, 637-645.	1.8	72
12	Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Molecular Breeding, 2010, 25, 327-338.	2.1	66
13	Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. Theoretical and Applied Genetics, 2011, 123, 1107-1119.	3.6	65
14	Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theoretical and Applied Genetics, 2009, 119, 263-269.	3.6	59
15	Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS ONE, 2019, 14, e0217222.	2.5	54
16	Quantitative Trait Loci Analysis for the Effect of <i>Rhtâ€B1</i> Dwarfing Gene on Coleoptile Length and Seedling Root Length and Number of Bread Wheat. Crop Science, 2011, 51, 2561-2568.	1.8	47
17	Genetic analysis of disease susceptibility contributed by the compatible Tsn1–SnToxA and Snn1–SnTox1 interactions in the wheat-Stagonospora nodorum pathosystem. Theoretical and Applied Genetics, 2010, 120, 1451-1459.	3.6	42
18	A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Genome, 2017, 60, 657-664.	2.0	33

#	Article	IF	CITATIONS
19	Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Molecular Breeding, 2013, 31, 195-204.	2.1	28
20	Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theoretical and Applied Genetics, 2015, 128, 1319-1328.	3.6	26
21	Evaluation of Seedling Resistance to Tan Spot and Stagonospora nodorum Blotch in Tetraploid Wheat. Crop Science, 2008, 48, 1107-1116.	1.8	22
22	Seedling Resistance to Tan Spot and Stagonospora nodorum Leaf Blotch in Wild Emmer Wheat (<i>Triticum dicoccoides</i>). Plant Disease, 2008, 92, 1229-1236.	1.4	21
23	RNA-seq analysis reveals different drought tolerance mechanisms in two broadly adapted wheat cultivars $\hat{a} \in TAM 111 \hat{a} \in TAM 112 \hat{a} \in$	3.3	19
24	Genome wide identification of QTL associated with yield and yield components in two popular wheat cultivars TAM 111 and TAM 112. PLoS ONE, 2020, 15, e0237293.	2.5	17
25	Function and evolution of allelic variations of $\langle i \rangle Sr13 \langle i \rangle$ conferring resistance to stem rust in tetraploid wheat ($\langle i \rangle Triticum\ turgidum \langle i \rangle$ L.). Plant Journal, 2021, 106, 1674-1691.	5.7	15
26	Genetic Dissection of QTL Associated with Grain Yield in Diverse Environments. Agronomy, 2014, 4, 556-578.	3.0	12
27	Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Communications Biology, 2021, 4, 375.	4.4	11
28	Comparative analysis of genetic background in eight near-isogenic wheat lines with different H genes conferring resistance to Hessian fly. Genome, 2011, 54, 81-89.	2.0	10
29	Chromosome aberrations induced by zebularine in triticale. Genome, 2016, 59, 485-492.	2.0	10
30	RNA-seq facilitates development of chromosome-specific markers and transfer of rye chromatin to wheat. Molecular Breeding, 2018, 38, 1.	2.1	10
31	Genetic dissection of endâ€use quality traits in two widely adapted wheat cultivars â€TAM 111' and â€TAM 112'. Crop Science, 2021, 61, 1944-1959.	1.8	9
32	Predominant wheat-alien chromosome translocations in newly developed wheat of China. Molecular Breeding, 2021, 41, 1.	2.1	9
33	Frequent variations in tandem repeats pSc200 and pSc119.2 cause rapid chromosome evolution of open-pollinated rye. Molecular Breeding, 2019, 39, 1.	2.1	8
34	Physical organization of repetitive sequences and chromosome diversity of barley revealed by fluorescence in situ hybridization (FISH). Genome, 2019, 62, 329-339.	2.0	8
35	Development of the Wheat Practical Haplotype Graph database as a resource for genotyping data storage and genotype imputation. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
36	Genome-wide QTL mapping of yield and agronomic traits in two widely adapted winter wheat cultivars from multiple mega-environments. PeerJ, 2021, 9, e12350.	2.0	6

3

#	Article	IF	CITATIONS
37	Mechanism of Sugarbeet Seed Germination Enhanced by Hydrogen Peroxide. Frontiers in Plant Science, 2022, 13, 888519.	3.6	5
38	Marker-assisted characterization of durum wheat Langdon–Golden Ball disomic substitution lines. Theoretical and Applied Genetics, 2010, 120, 1575-1585.	3.6	2
39	Chromosome diversity in <i>Dasypyrum villosum</i> , an important genetic and trait resource for hexaploid wheat engineering. Annals of Botany, 2023, 131, 185-198.	2.9	2
40	Newly Developed Sugarbeet Lines with Altered Postharvest Respiration Rates Differ in Transcription Factor and Glycolytic Enzyme Expression. Crop Science, 0, , .	1.8	1
41	A new strategy for using historical imbalanced yield data to conduct genome-wide association studies and develop genomic prediction models for wheat breeding. Molecular Breeding, 2022, 42, 1.	2.1	O
42	Frequent numerical and structural chromosome changes in early generations of synthetic hexaploid wheat. Genome, 2022, 65, 205-217.	2.0	0